scholarly journals Co-occurrence of RNA viruses in Tasmanian-introduced bumble bees (Bombus terrestris) and honey bees (Apis mellifera)

Apidologie ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 243-251
Author(s):  
Elisabeth Fung ◽  
Kelly Hill ◽  
Katja Hogendoorn ◽  
Andrew B. Hingston ◽  
Richard V. Glatz
2017 ◽  
Vol 70 ◽  
pp. 52-57 ◽  
Author(s):  
B.G. Howlett ◽  
S.F.J. Read ◽  
L.K. Jesson ◽  
A. Benoist ◽  
L.E. Evans ◽  
...  

Different pollinators may vary in their temporal flower-visitation patterns within crops, potentially extending the period pollination may occur. To assess whether this could be the case in kiwifruit, we conducted standardised observational surveys of insects visiting kiwifruit flowers within 31 orchards at three times: 10:00—11:00, 12:00—13:00 and 14:00—15:00 hr. Honey bees (Apis mellifera) represented 92% of visitations (n=5474), but temporal abundances were uneven (predicted abundances were lower at 14:00—15:00 hr). Predatory hover flies (Melangyna, Melonostoma, Allograpta spp.) also showed an uneven temporal pattern. There were no significant differences in the temporal abundances for buff-tailed bumble bees (Bombus terrestris), rat- tailed hover flies (Eristalis, Helophilus spp.), March flies (Dilophis nigrostigma), flower longhorn beetles (Zorion guttigerum) or the native bees (Leioproctus and Lasioglossum spp.) although, in some cases, low numbers may have masked potential unevenness trends. Variation in diurnal flower-visitation patterns among insects suggests the potential for complementarity between different pollinators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Chandra M. Walter ◽  
Eluned M. Blows ◽  
Tomer J. Czaczkes ◽  
Karin L. Alton ◽  
...  

We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy) growing in Sussex, United Kingdom, by following individual insects (n=2987) from nine functional groups (honey bees (Apis mellifera), bumble bees (Bombusspp.), hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths). Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16), with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp.) than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genusOsmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute) compared to the other non-Apidae bees (4.3 flowers/minute). Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%). Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.


2019 ◽  
Vol 65 (No. 12) ◽  
pp. 574-580
Author(s):  
Jan Kazda ◽  
Aneta Bokšová ◽  
Martina Stejskalová ◽  
Tomáš Šubrt ◽  
Jan Bartoška ◽  
...  

Currently, the hybrid cultivars are predominant in the cultivation of winter oilseed rape in Europe. Cultivation of hybrid cultivars instead of the traditional line can affect the visitation of pollinators. Beekeepers and farmers claim that hybrid cultivars are not visited by pollinators as much as the line. Ten yellow and one white flowering oilseed rape cultivars were used to compare the visitation rates of pollinators (Apis mellifera L. and Bombus sp.) during flowering in the years 2015–2017. At the same time, the visitation of hybrid and line cultivars by pollinators was evaluated. Visitation of pollinators on each cultivar was calculated from observed visitations to flowering oilseed rape plants in an area 2.1 m<sup>2</sup> from the edge of single plots for 20 s. The results from this study clearly show that the individual cultivars, whether hybrids or lines, did not have a major influence on the pollinators’ visitation, either by honey bees or bumble bees. It is thus proved that hybrid cultivars do not affect the pollinator visitation and there is no need to worry about the prevalence of these cultivars in the Czech fields. However, a more significant effect for both pollinator groups appears to have been the color of the flower.


2017 ◽  
Vol 149 (2) ◽  
pp. 204-213 ◽  
Author(s):  
S.D. Gillespie ◽  
J. Bayley ◽  
E. Elle

AbstractIntegration of pollinator-dependent invasive plants into native pollination networks can have direct and indirect effects on local plant and pollinator communities. Impacts on local plants are well documented; however effects on native pollinators have gained less attention. We examine these issues in habitat fragments of the endangered oak-savannah ecosystem in British Columbia, Canada. We measured pollen collection by native bumble bees (Bombus Latreille; Hymenoptera: Apidae) and the introduced honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) foraging on two common native plants in habitat fragments with varying invasive (Cytisus scoparius (Linnaeus) Link; Fabaceae) density. The Bombus species with the largest workers had higher proportions of invasive pollen on their bodies and in their corbiculae than smaller workers. Honey bees rarely collected C. scoparius pollen. While some native bumble bees species collect an increasing proportion of C. scoparius pollen with increasing C. scoparius density, this did not translate into an increased potential for pollination. Rather, measures of effective pollination decline with C. scoparius density. Overall, our results suggest that some bee species may be better at finding resources at highly invaded sites. Apis mellifera is likely not playing a major role in facilitating the spread of C. scoparius in our region. Rather C. scoparius is visited by a complement of native bumble bees that are similar to pollinators in the native range of this plant.


2013 ◽  
Vol 38 (4) ◽  
pp. 323-329 ◽  
Author(s):  
NICHOLAS J. BALFOUR ◽  
MIHAIL GARBUZOV ◽  
FRANCIS L.W. RATNIEKS

Sign in / Sign up

Export Citation Format

Share Document