viral diversity
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 106)

H-INDEX

34
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Elizaveta V. Starikova ◽  
Ksenia M. Klimina ◽  
Anastasia O. Eudokimova ◽  
Ksenia A. Yeruslanova ◽  
Denis A. Gudkov ◽  
...  

The microbial community of the human intestine is important for maintaining human health. It has been reported that the gut microbiome changes with age, and it can be enrichedwith certain beneficial bacteria while also losing certain commensal bacteria.Little is known about the gut virome of long-livers. Our research aimed to extract, sequence and analyze the viral fraction of long-livers’ gut microbiota in comparison with those of young adults and the elderly. We were thereby able to characterize the gut virome profiles and viral diversity of three age groups. Keywords: aging, gut microbiome, viral metagenomics, bacteriophages


2022 ◽  
Author(s):  
Rebecca French ◽  
Justine Charon ◽  
Callum Le Lay ◽  
Chris Muller ◽  
Edward C Holmes

Although water borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metagenomic next generation sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land use impact, ranging from pristine to urban. From this we identified 504 putative virus species, of which 97% were novel. Many of the novel viruses were highly divergent, and likely included a new subfamily within the Parvoviridae. We identified at least 63 virus species that may infect vertebrates, most likely fish and water birds, from the Astroviridae, Birnaviridae, Parvoviridae and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n=150) and pristine sites (n=119), and more viruses were shared between the urban and farming sites (n=76) than between the pristine and farming or urban sites (n=24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Overall, our study shows that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanization on water systems.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Rory Gibb ◽  
Gregory F. Albery ◽  
Nardus Mollentze ◽  
Evan A. Eskew ◽  
Liam Brierley ◽  
...  

Host-virus association data underpin research into the distribution and eco-evolutionary correlates of viral diversity and zoonotic risk across host species. However, current knowledge of the wildlife virome is inherently constrained by historical discovery effort, and there are concerns that the reliability of ecological inference from host-virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate whether current estimates of host-level viral diversity in wild mammals are stable enough to be considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6571 unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in mammal hosts are either constant or accelerating, with little evidence of declines towards viral richness asymptotes, even in highly sampled hosts. Consequently, inference of relative viral richness across host species has been unstable over time, particularly in bats, where intensified surveillance since the early 2000s caused a rapid rearrangement of species' ranked viral richness. Our results illustrate that comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since it is feasible that an analysis conducted today could draw quite different conclusions than one conducted only a decade ago.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Kaho H. Tisthammer ◽  
Christopher Kline ◽  
Tara Rutledge ◽  
Collin R. Diedrich ◽  
Sergio Ita ◽  
...  

Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.


Author(s):  
Rosa I. Santamaría ◽  
Patricia Bustos ◽  
Jannick Van Cauwenberghe ◽  
Víctor González

In this study, we addressed the extent of diversification of phages associated with nitrogen-fixing symbiotic Rhizobium species. Despite the ecological and economic importance of the Rhizobium genus, little is known about the diversity of the associated phages. A thorough assessment of viral diversity requires investigating both lytic phages and prophages harboured in diverse Rhizobium genomes. Protein-sharing networks identified 56 viral clusters (VCs) among a set of 425 isolated phages and predicted prophages. The VCs formed by phages had more proteins in common and a higher degree of synteny, and they group together in clades in the associated phylogenetic tree. By contrast, the VCs of prophages showed significant genetic variation and gene loss, with selective pressure on the remaining genes. Some VCs were found in various Rhizobium species and geographical locations, suggesting that they have wide host ranges. Our results indicate that the VCs represent distinct taxonomic units, probably representing taxa equivalent to genera or even species. The finding of previously undescribed phage taxa indicates the need for further exploration of the diversity of phages associated with Rhizobium species. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


2021 ◽  
pp. 75-83
Author(s):  
Sushanta Kumar Barik ◽  
Keshar Kunja Mohanty ◽  
Sashi Bhushan Mohapatra ◽  
Srikanta Jena ◽  
Shripad A. Patil ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259531
Author(s):  
Mariana Kikuti ◽  
Juan Sanhueza ◽  
Carles Vilalta ◽  
Igor Adolfo Dexheimer Paploski ◽  
Kimberly VanderWaal ◽  
...  

Porcine reproductive and respiratory syndrome virus genotype 2 (PRRSV-2) genetic diversity in the U.S. was assessed using a database comprising 10 years’ worth of sequence data obtained from swine production systems routine monitoring and outbreak investigations. A total of 26,831 ORF5 PRRSV-2 sequences from 34 production systems were included in this analysis. Within group mean genetic distance (i.e. mean proportion of nucleotide differences within ORF5) per year according to herd type was calculated for all PRRSV-2 sequences. The percent nucleotide difference between each sequence and the ORF5 sequences from four commercially available PRRSV-2 vaccines (Ingelvac PRRS MLV, Ingelvac PRRS ATP, Fostera PRRS, and Prevacent PRRS) within the same lineage over time was used to classify sequences in wild-type or vaccine-like. The mean ORF5 genetic distance fluctuated from 0.09 to 0.13, being generally smaller in years in which there was a relative higher frequency of dominant lineage. Vaccine-like sequences comprised about one fourth of sequences obtained through routine monitoring of PRRS. We found that lineage 5 sequences were mostly Ingelvac PRRS MLV-like. Lineage 8 sequences up to 2011 were 62.9% Ingelvac PRRS ATP-like while the remaining were wild-type viruses. From 2012 onwards, 51.9% of lineage 8 sequences were Ingelvac PRRS ATP-like, 45.0% were Fostera PRRS-like, and only 3.2% were wild-type. For lineage 1 sequences, 0.1% and 1.7% of the sequences were Prevacent PRRS-like in 2009–2018 and 2019, respectively. These results suggest that repeated introductions of vaccine-like viruses through use of modified live vaccines might decrease within-lineage viral diversity as vaccine-like strains become more prevalent. Overall, this compilation of private data from routine monitoring provides valuable information on PRRSV viral diversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Altar M. Munis ◽  
Monique Andersson ◽  
Alexander Mobbs ◽  
Stephen C. Hyde ◽  
Deborah R. Gill

AbstractEpidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing infection rates and helping the virus evade the host immune system. To understand the changes in viral genomic diversity and molecular epidemiology in Oxford during the first wave of infections in the United Kingdom, we analyzed 563 clinical SARS-CoV-2 samples via whole-genome sequencing using Nanopore MinION sequencing. Large-scale surveillance efforts during viral epidemics are likely to be confounded by the number of independent introductions of the viral strains into a region. To avoid such issues and better understand the selection-based changes occurring in the SARS-CoV-2 genome, we utilized local isolates collected during the UK’s first national lockdown whereby personal interactions, international and national travel were considerably restricted and controlled. We were able to track the short-term evolution of the virus, detect the emergence of several mutations of concern or interest, and capture the viral diversity of the region. Overall, these results demonstrate genomic pathogen surveillance efforts have considerable utility in controlling the local spread of the virus.


mBio ◽  
2021 ◽  
Author(s):  
Ruonan Wu ◽  
Michelle R. Davison ◽  
William C. Nelson ◽  
Emily B. Graham ◽  
Sarah J. Fansler ◽  
...  

Soil viruses are abundant, but the influence of the environment and climate on soil viruses remains poorly understood. Here, we addressed this gap by comparing the diversity, abundance, lifestyle, and metabolic potential of DNA viruses in three grassland soils with historical differences in average annual precipitation, low in eastern Washington (WA), high in Iowa (IA), and intermediate in Kansas (KS).


2021 ◽  
Author(s):  
Katherine A. Amato ◽  
Luis A. Haddock ◽  
Katarina M. Braun ◽  
Victoria Meliopoulos ◽  
Brandi Livingston ◽  
...  

AbstractTransmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The presence of bottlenecks within individual hosts and their potential impacts on evolutionary pathways taken during infection and subsequent transmission are poorly understood. To address this knowledge gap, we created highly diverse IAV libraries bearing molecular barcodes on two independent gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in “islands” of infection in lung lobes, each with genetically distinct populations. We performed site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and tracked viral diversity as infection spread to the trachea and lungs. We observed compartmentalized replication of discrete barcoded populations within the lobes of the lung. Bottlenecks stochastically sampled individual viruses from the upper respiratory tract or the trachea that became the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with no evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.


Sign in / Sign up

Export Citation Format

Share Document