scholarly journals Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vishal B. Siramshetty ◽  
Pranav Shah ◽  
Edward Kerns ◽  
Kimloan Nguyen ◽  
Kyeong Ri Yu ◽  
...  

AbstractHepatic metabolic stability is a key pharmacokinetic parameter in drug discovery. Metabolic stability is usually assessed in microsomal fractions and only the best compounds progress in the drug discovery process. A high-throughput single time point substrate depletion assay in rat liver microsomes (RLM) is employed at the National Center for Advancing Translational Sciences. Between 2012 and 2020, RLM stability data was generated for ~ 24,000 compounds from more than 250 projects that cover a wide range of pharmacological targets and cellular pathways. Although a crucial endpoint, little or no data exists in the public domain. In this study, computational models were developed for predicting RLM stability using different machine learning methods. In addition, a retrospective time-split validation was performed, and local models were built for projects that performed poorly with global models. Further analysis revealed inherent medicinal chemistry knowledge potentially useful to chemists in the pursuit of synthesizing metabolically stable compounds. In addition, we deposited experimental data for ~ 2500 compounds in the PubChem bioassay database (AID: 1508591). The global prediction models are made publicly accessible (https://opendata.ncats.nih.gov/adme). This is to the best of our knowledge, the first publicly available RLM prediction model built using high-quality data generated at a single laboratory.

2020 ◽  
Vol 17 ◽  
Author(s):  
LiJuan Wang ◽  
Yan Liu ◽  
Rui Li ◽  
DongXian He

Objectives: Triptolide (TPL) has been shown to have a good clinical effect on rheumatoid arthritis (RA). We designed TPL microspheres (TPL-MS) and investigated its metabolic behavior in human, dog, rabbit and rat liver microsomes (HLM, DLM, RLM and SDRLM) with UPLC-MS/MS method. Methods: First, a UPLC-MS/MS method was established to measure concentration of TPL in samples. The sample was separated on a C18 column (2.1×100 mm, 1.8μm) and eluted with a gradient elution. The precursor ion/product ion were m/z 378.1/361.0 for TPL and 260.0/116.2 for the internal standard. Then T1/2, Vmax and CLint were calculated from the above data. Finally, the metabolites of TPL-MS were identified by high-resolution UPLC-MS/MS. The sample was separated on a C18 column (2.1×100 mm, 2.2 μm) and eluted with isocratic elution. Mass spectrometric detection was carried out on a thermo Q-exactive mass spectrometer with HESI. The scanning range of precursor ions was from m/z 50 to m/z 750. Result and Discussion: Through several indicators including standard curve, precision, accuracy, stability, matrix effect and recovery rate, the enzymatic kinetics parameters including T1/2, Vmax and CLint were completed. Several metabolites of TPL-MS were identified. Conclusion: UPLC-MS/MS method is an accurate and sensitive method for determination of TPL in liver microsome samples with good precision, accuracy and stability. The variation of parameters indicated that the microspheres can delay the elimination of TPL in liver microsomes. The metabolism of TPL-MS varied among species, but no new metabolites appeared.


Author(s):  
Hua‐Hai Zhang ◽  
Wen‐Jia Yang ◽  
Ya‐Jun Huang ◽  
Wen‐Jing Li ◽  
Shuo‐Xin Zhang ◽  
...  

2021 ◽  
Author(s):  
Anna Mieszkowska ◽  
Koleta Hemine ◽  
Anna Skwierawska ◽  
Ewa Augustin ◽  
Zofia Mazerska

AbstractThe present studies were carried out to evaluate the simultaneous one-pot metabolism of opipramol (IS-opi) and analog (IS-noh) by phase I and phase II enzymes present in rat liver microsomes (RLM) as an alternative to separate testing with recombinant enzymes. This approach allows for more time-saving and cost-effective screening of the metabolism of newly discovered drugs. We also considered that the lack of results for phase II, including UGT, often creates problems in correct selection of valuable compounds. Moreover, microsomes data set is richer in the contest and provides medical scientist to determine also the susceptibility of drugs to undergo phase I and then phase II. In the present work, we have shown that IS-noh was metabolized in vitro by phase I enzymes to the oxidation product, which was next transformed with UGTs to glucuronide. The results showed also that the previously known oxidation product of opipramol was changed to previously no reported glucuronidation product by UDP-glucuronosyltransferases. In addition, unlike IS-noh, opipramol did not prove to be the substrate for UGTs. Therefore, tricyclic antidepressants depending on the structure can trigger a different response after contact with UGT enzymes. Some will metabolize directly with UGTs, others only after activation by phase I enzymes.


1984 ◽  
Vol 259 (9) ◽  
pp. 5776-5783 ◽  
Author(s):  
M VanRollins ◽  
R C Baker ◽  
H W Sprecher ◽  
R C Murphy

Sign in / Sign up

Export Citation Format

Share Document