scholarly journals The time-fractional kinetic equation for the non-equilibrium processes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ekrem Aydiner

AbstractIn this study, we consider the non-Markovian dynamics of the generic non-equilibrium kinetic process. We summarize the generalized master equation, the continuous and discrete forms of the time-fractional diffusion equation. Using path integral formulation, we generalized the solutions of the Markovian system to the non-Markovian for the non-equilibrium kinetic processes. Then, we obtain the time-fractional kinetic equation for the non-equilibrium systems in terms of free energy. Finally, we introduce a time-fractional equation to analyse time evolution of the open probability for the deformed voltage-gated ion-channel system as an example.

2021 ◽  
Vol 10 (5) ◽  
pp. 2593-2610
Author(s):  
Wagdi F.S. Ahmed ◽  
D.D. Pawar ◽  
W.D. Patil

In this study, a new and further generalized form of the fractional kinetic equation involving the generalized V$-$function has been developed. We have discussed the manifold generality of the generalized V$-$function in terms of the solution of the fractional kinetic equation. Also, the graphical interpretation of the solutions by employing MATLAB is given. The results are very general in nature, and they can be used to generate a large number of known and novel results.


2005 ◽  
Vol 37 (2) ◽  
pp. 366-392 ◽  
Author(s):  
J. M. Angulo ◽  
V. V. Anh ◽  
R. McVinish ◽  
M. D. Ruiz-Medina

In this paper, we consider a certain type of space- and time-fractional kinetic equation with Gaussian or infinitely divisible noise input. The solutions to the equation are provided in the cases of both bounded and unbounded domains, in conjunction with bounds for the variances of the increments. The role of each of the parameters in the equation is investigated with respect to second- and higher-order properties. In particular, it is shown that long-range dependence may arise in the temporal solution under certain conditions on the spatial operators.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Gianluigi Catelani ◽  
Denis Basko

We study the effect of non-equilibrium quasiparticles on the operation of a superconducting device (a qubit or a resonator), including heating of the quasiparticles by the device operation. Focusing on the competition between heating via low-frequency photon absorption and cooling via photon and phonon emission, we obtain a remarkably simple non-thermal stationary solution of the kinetic equation for the quasiparticle distribution function. We estimate the influence of quasiparticles on relaxation and excitation rates for transmon qubits, and relate our findings to recent experiments.


2020 ◽  
Vol 5 (2) ◽  
pp. 15-34 ◽  
Author(s):  
Daljeet Kaur ◽  
Praveen Agarwal ◽  
Madhuchanda Rakshit ◽  
Mehar Chand

AbstractAim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.


2019 ◽  
Vol 22 (7) ◽  
pp. 1167-1184 ◽  
Author(s):  
D. L. Suthar ◽  
Haile Habenom ◽  
Kottakkaran Sooppy Nisar

Sign in / Sign up

Export Citation Format

Share Document