fractional kinetic equations
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Mahmoud Abul-Ez ◽  
Mohra Zayed ◽  
Ali Youssef

The theory of Bessel functions is a rich subject due to its essential role in providing solutions for differential equations associated with many applications. As fractional calculus has become an efficient and successful tool for analyzing various mathematical and physical problems, the so-called fractional Bessel functions were introduced and studied from different viewpoints. This paper is primarily devoted to the study of developing two aspects. The starting point is to present a fractional Laplace transform via conformable fractional-order Bessel functions (CFBFs). We establish several important formulas of the fractional Laplace Integral operator acting on the CFBFs of the first kind. With this in hand, we discuss the solutions of a generalized class of fractional kinetic equations associated with the CFBFs in view of our proposed fractional Laplace transform. Next, we derive an orthogonality relation of the CFBFs, which enables us to study an expansion of any analytic functions by means of CFBFs and to propose truncated CFBFs. A new approximate formula of conformable fractional derivative based on CFBFs is provided. Furthermore, we describe a useful scheme involving the collocation method to solve some conformable fractional linear (nonlinear) multiorder differential equations. Accordingly, several practical test problems are treated to illustrate the validity and utility of the proposed techniques and examine their approximate and exact solutions. The obtained solutions of some fractional differential equations improve the analog ones provided by various authors using different techniques. The provided algorithm may be beneficial to enrich the Bessel function theory via fractional calculus.


2021 ◽  
Vol 10 (5) ◽  
pp. 2593-2610
Author(s):  
Wagdi F.S. Ahmed ◽  
D.D. Pawar ◽  
W.D. Patil

In this study, a new and further generalized form of the fractional kinetic equation involving the generalized V$-$function has been developed. We have discussed the manifold generality of the generalized V$-$function in terms of the solution of the fractional kinetic equation. Also, the graphical interpretation of the solutions by employing MATLAB is given. The results are very general in nature, and they can be used to generate a large number of known and novel results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haile Habenom ◽  
Abdi Oli ◽  
D. L. Suthar

In this paper, the generalized fractional integral operators involving Appell’s function F 3 ⋅ in the kernel due to Marichev–Saigo–Maeda are applied to the p , q -extended Struve function. The results are stated in terms of Hadamard product of the Fox–Wright function ψ r s z and the p , q -extended Gauss hypergeometric function. A few of the special cases (Saigo integral operators) of our key findings are also reported in the corollaries. In addition, the solutions of a generalized fractional kinetic equation employing the concept of Laplace transform are also obtained and examined as an implementation of the p , q -extended Struve function. Technique and findings can be implemented and applied to a number of similar fractional problems in applied mathematics and physics.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Min Lu ◽  
Junfeng Liu

AbstractIn this article we study a class of stochastic fractional kinetic equations with fractional noise which are spatially homogeneous and are fractional in time with $H>1/2$ H > 1 / 2 . The diffusion operator involved in the equation is the composition of the Bessel and Riesz potentials with any fractional parameters. We prove the existence of the solution under some mild conditions which generalized some results obtained by Dalang (Electron. J. Probab. 4(6):1–29, 1999) and Balan and Tudor (Stoch. Process. Appl. 120:2468–2494 , 2010). We study also its Hölder continuity with respect to space and time variables with $b=0$ b = 0 . Moreover, we prove the existence for the density of the solution and establish the Gaussian-type lower and upper bounds for the density by the techniques of Malliavin calculus.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 01
Author(s):  
Garima Agarwal ◽  
Sunil Joshi ◽  
Kottakkaran Sooppy Nisar

The present investigation aims to extract a solution from the generalized fractional kinetic equations involving the generalized q-Bessel function by applying the Laplace transform. Methodology and results can be adopted and extended to a variety of related fractional problems in mathematical physics.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
D. L. Suthar ◽  
S. D. Purohit ◽  
Serkan Araci

In this paper, our aim is to finding the solutions of the fractional kinetic equation related with the p,q-Mathieu-type series through the procedure of Sumudu and Laplace transforms. The outcomes of fractional kinetic equations in terms of the Mittag-Leffler function are presented.


Sign in / Sign up

Export Citation Format

Share Document