scholarly journals Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
MirKazem Omrani ◽  
Hamidreza Mohammadi ◽  
Hamidreza Fallah

AbstractIn this study, the effect of the plasmon hybridization mechanism on the performance and refractive index (RI) sensitivity of nanoshell, nanocage and nanoframe structures is investigated using the finite-difference time-domain simulation. To create nanocage structure, we textured the cubic nanoshell surfaces and examined the impact of its key parameters (such as array of cavities, size of cavities and wall thickness) on the nanocage's RI-sensitivity. Synthesis of the designed nanocages is a challenging process in practice, but here the goal is to understand the physics lied behind it and try to answer the question “Why nanoframes are more sensitive than nanocages?”. Our obtained results show that the RI-sensitivity of nanocage structures increases continuously by decreasing the array of cavities. Transforming the nanocage to the nanoframe structure by reducing the array of cavities to a single cavity significantly increases the RI-sensitivity of the nanostructure. This phenomenon can be related to the simultaneous presence of symmetric and asymmetric plasmon oscillations in the nanocage structure and low restoring force of nanoframe compared to nanocage. As the optimized case shows, the proposed single nanoframe with aspect ratio (wall length/wall thickness) of 12.5 shows RI-sensitivity of 1460 nm/RIU, the sensitivity of which is ~ 5.5 times more than its solid counterpart.

2021 ◽  
Author(s):  
Zohreh Sharifi ◽  
Reuven Gordon

Abstract The impact of loss on the plasmonic resonances in metal-insulator­metal slits is analyzed, particularly the significant effect of loss on the reflection phase. The reflection is calculated analytically using single mode matching the­ory with the unconjugated form of the orthogonality relation. This theoretical calculation agrees well with comprehensive simulations, but differs substan­tially from the conjugated orthogonality result, as was used in past analytical works. This reflection phase has a large impact on the plasmonic resonance wavelengths, which are calculated using a Fabry-Pérot theory and compared with past experiment and finite-difference time-domain simulations.


Sign in / Sign up

Export Citation Format

Share Document