line theory
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 104)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Nadhiratul Akmal Ab Razak ◽  
◽  
Mohd Fadhli Zulkafli ◽  

The existence of the new bell-shaped span-load wing is said to has the best lift distribution especially comparing to the elliptical wing. Bell-shaped span-load wing is designed by configuring the twist of the wing. However, the information on the aerodynamic and stability characteristics of the bell-shaped span-load wing is limited. Thus, the main purpose of the research is to evaluate the aerodynamic and stability characteristic to strengthen the claim of the capability of bell-shaped span-load wing in producing minimum induced drag. As the research is expected to be beneficial to the aviation design team, detailed information regarding the lift distribution as well as the induced drag produced is analysed at the optimum angle of attack and the results is further explained in this research. The numerical method for the analysis is done by using Lifting Line Theory (LLT) in the XFLR5 software which can analyse the wings of aircraft in terms of its aerodynamic and stability characteristic. Then, the comparison of the aerodynamic characteristics for bell-shaped span-load, elliptical span-load and tapered wing done in this research is to strengthen the appeal made stating that the bell-shaped span-load wing is the best type of wing ever existed and may replace the elliptical wing as the best wing shape with aerodynamically most efficient. The research has proven that along the wingspan, the bell-shaped span-load wing produced the lowest and minimum induced drag when being compared. At the optimum angle of attack of bell-shaped span-load wing, though the lift produced is slightly lower than the elliptical and tapered wing, the difference in the induced drag is obvious as bell-shaped span-load wing produces induced drag that is lower than 0. In other words, starting from the semi span of the wing to the wingtip, the bell-shaped span-load wing managed to be the most aerodynamically efficient wing.


2021 ◽  
Vol 19 ◽  
pp. 31-40
Author(s):  
Anika Henke ◽  
Stephan Frei

Abstract. In this contribution, similarities and differences between electrical and thermal effects on cables are investigated. In the electrical transmission line theory, a wide variety of methods is known to describe the voltage and current along cables. The potential for the adaption of some of those methods to thermal problems is discussed. Exemplarily, for an unshielded single cable, an analytical solution based on the Laplace transform and an approach based on cascaded equivalent circuits are compared with a numerical reference solution and measurement results.


Author(s):  
K Ramesh ◽  
I S Makkar

Advances in Computational Fluid Dynamics (CFD) techniques through the development of the Reynolds-Averaged Navier-Stokes Equations (RANSE) have assisted in estimation of resistance and propulsion characteristics of ships to a reasonable level of accuracy. The aim of this paper is to test and demonstrate the capabilities of the coupled RANSE and Lifting Line theory for undertaking ship resistance, propeller open-water and self-propulsion simulations. Further, parametric studies for generation of numerical propeller design sheets and optimisation of propulsive efficiency using the coupled simulation approach has been discussed. Commercial CFD solver “M/s Flowtech - Shipflow” has been used for the study. Initially, some benchmark experimental/numerical model results are validated with the results of the CFD simulations and then, further parametric analyses have been undertaken with the KRISO Container Ship and the KP505 Propeller. The numerical propeller series and the preliminary study methodology for optimization of location of propeller disc behind the ship’s hull are being proposed as an effective concept/feasibility design stage tool for estimation of ship propulsion characteristics.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4247
Author(s):  
Kyeong-Han Na ◽  
Kyong-Pil Jang ◽  
Sung-Wook Kim ◽  
Won-Youl Choi

Ni0.5Zn0.5Fe2O4 nanofibers with an average diameter of 133.56 ± 12.73 nm were fabricated by electrospinning and calcination. According to our thermogravimetric—differential thermal analysis and X-ray diffraction results, the calcination temperature was 650 °C. The microstructure, crystal structure, and chemical composition of the nanofibers were observed using field-emission scanning electron, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Commercial particle samples and samples containing 10 wt% and 20 wt% nanofibers were fabricated, and the electromagnetic properties were analyzed with a vector network analyzer and a 7.00 mm coaxial waveguide. Regardless of the nanofiber content, Ni0.5Zn0.5Fe2O4 was dominantly affected by the magnetic loss mechanism. Calculation of the return loss based on the transmission line theory confirmed that the electromagnetic wave return loss was improved up to −59.66 dB at 2.75 GHz as the nanofiber content increased. The absorber of mixed compositions with Ni0.5Zn0.5Fe2O4 nanofibers showed better microwave absorption performance. It will be able to enhance the performance of commercial electromagnetic wave absorbers of various types such as paints and panels.


2021 ◽  
Vol 2 (1) ◽  
pp. 14-17
Author(s):  
Subiyanto Subiyanto ◽  
Sudradjat Supian

This paper aim to create simple hydrodynamic simulation by using MIKE 21. The module used in MIKE 21 is LITPACK. LITPACK is one of the modules in MIKE 21 to solve hydraulic and sedimentation problems in coastal areas. Especially in this paper, the LITTLITE engine in LITPACK will be used. LITLINE determines the coastline position using a timeseries of wave climatic data. The model is based on a one-line theory, in which the cross-shore profile is expected to remain unaltered during erosion/accretion, with minor adjustments. Coastal morphology is thus only defined by coastline location (cross-shore direction) and coastal profile at a given long-shore position. The simulation used in this paper is the influence of groins on shoreline dynamics. The results of the simulation show that some areas will experience abrasion and some will experience accretion. 


2021 ◽  
pp. 1-25
Author(s):  
K.A.R. Ismail ◽  
Willian Okita

Abstract Small wind turbines are adequate for electricity generation in isolated areas to promote local expansion of commercial activities and social inclusion. Blade element momentum (BEM) method is usually used for performance prediction, but generally produces overestimated predictions since the wake effects are not precisely accounted for. Lifting line theory (LLT) can represent the blade and wake effects more precisely. In the present investigation the two methods are analyzed and their predictions of the aerodynamic performance of small wind turbines are compared. Conducted simulations showed a computational time of about 149.32 s for the Gottingen GO 398 based rotor simulated by the BEM and 1007.7 s for simulation by the LLT. The analysis of the power coefficient showed a maximum difference between the predictions of the two methods of about 4.4% in the case of Gottingen GO 398 airfoil based rotor and 6.3% for simulations of the Joukowski J 0021 airfoil. In the case of the annual energy production a difference of 2.35% is found between the predictions of the two methods. The effects of the blade geometrical variants such as twist angle and chord distributions increase the numerical deviations between the two methods due to the big number of iterations in the case of LLT. The cases analyzed showed deviations between 3.4% and 4.1%. As a whole, the results showed good performance of both methods; however the lifting line theory provides more precise results and more information on the local flow over the rotor blades.


2021 ◽  
Vol 130 (19) ◽  
pp. 194902
Author(s):  
Tobias Schaich ◽  
Daniel Molnar ◽  
Anas Al Rawi ◽  
Mike Payne

2021 ◽  
Vol 1 (1) ◽  
pp. 50-59
Author(s):  
Yousef Zandi ◽  
Afram Keivani

In the analysis of rectangular reinforced liquid storage tanks, a method assuming linear-elastic behavior for material can be used, i.e., the strip method, the moment coefficient method, the finite element method, etc. In the analysis of these types of tanks, tank walls can be considered as slabs. In this study, tank walls were analyzed as slabs subjected to hydrostatic loading; in the analysis, the yield line theory is used because it is more suitable for the linear inelastic behavior of reinforced concrete slabs than the ones based on the linear elastic theory. An iterative algorithm based on yield line theory is presented for the design of isotropically reinforced recrangular concrete slabs supported along all four edges. A computer program is coded which predicts the location of yield lines for the slabs depending upon certain parameters. As a result of this prediction, the manual design of such slabs can be significantly simplified by the use of the coefficient obtained by using the program. It was shown that the analytical computation of the ultimate moment per unit length requires the solution of a highly nonlinear system of equations. This difficulty was overcome by utilizing an iterative technique within the computer program. It also gives the value of the ultimate moment per unit length of the yield line.


2021 ◽  
Vol 11 (22) ◽  
pp. 10631
Author(s):  
José Lobo do Vale ◽  
John Raffaelli ◽  
Afzal Suleman

A morphing wing concept allowing for coupled twist-camber shape adaptation is proposed. The design is based on an optimized thickness distribution both spanwise and chordwise to be able to morph the wing sections into targeted airfoil shapes. Simultaneously, the spanwise twist is affected by the actuation. The concept provides a higher degree of control on the lift distribution which can be used for roll control, drag minimization, and active load alleviation. Static deformation and flight tests have been performed to evaluate and quantify the performance of the proposed mechanism. The ground tests include mapped actuated wing shapes, and wing mass and actuation power requirements. Roll authority, load alleviation, and aerodynamic efficiency estimates for different configurations were calculated using a lifting line theory coupled with viscous 2D airfoil data. Roll authority was estimated to be low when compared to a general aviation aircraft while the load alleviation capability was found to be high. Differences between the lift to drag ratio between the reference and morphing wing configurations are considerable. Mass and actuation energy present challenges that can be mitigated. The flight tests were used to qualitatively assess the roll control capability of the prototype, which was found to be adequate.


Sign in / Sign up

Export Citation Format

Share Document