scholarly journals Symmetry perception with spiking neural networks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan K. George ◽  
Cesare Soci ◽  
Mario Miscuglio ◽  
Volker J. Sorger

AbstractMirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution providing such perceptual organization functionality, and furthermore has made tremendous advances in computing efficiency by applying a spiking model of information. Spiking models inherently maximize efficiency in noisy environments by placing the energy of the signal in a minimal time. However, many neuromorphic computing models ignore time delay between nodes, choosing instead to approximate connections between neurons as instantaneous weighting. With this assumption, many complex time interactions of spiking neurons are lost. Here, we show that the coincidence detection property of a spiking-based feed-forward neural network enables mirror symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how symmetry density enables automated recognition of man-made structures over vegetation. We further demonstrate that the addition of noise improves feature detectability of an image through coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating the brain-machine interconnection. More importantly it enables a technology pathway in bridging the gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as recognized objects and scenes in the world.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 396 ◽  
Author(s):  
Errui Zhou ◽  
Liang Fang ◽  
Binbin Yang

Neuromorphic computing systems are promising alternatives in the fields of pattern recognition, image processing, etc. especially when conventional von Neumann architectures face several bottlenecks. Memristors play vital roles in neuromorphic computing systems and are usually used as synaptic devices. Memristive spiking neural networks (MSNNs) are considered to be more efficient and biologically plausible than other systems due to their spike-based working mechanism. In contrast to previous SNNs with complex architectures, we propose a hardware-friendly architecture and an unsupervised spike-timing dependent plasticity (STDP) learning method for MSNNs in this paper. The architecture, which is friendly to hardware implementation, includes an input layer, a feature learning layer and a voting circuit. To reduce hardware complexity, some constraints are enforced: the proposed architecture has no lateral inhibition and is purely feedforward; it uses the voting circuit as a classifier and does not use additional classifiers; all neurons can generate at most one spike and do not need to consider firing rates and refractory periods; all neurons have the same fixed threshold voltage for classification. The presented unsupervised STDP learning method is time-dependent and uses no homeostatic mechanism. The MNIST dataset is used to demonstrate our proposed architecture and learning method. Simulation results show that our proposed architecture with the learning method achieves a classification accuracy of 94.6%, which outperforms other unsupervised SNNs that use time-based encoding schemes.


2018 ◽  
Vol 27 (4) ◽  
pp. 667-674 ◽  
Author(s):  
Ming ZHANG ◽  
Zonghua GU ◽  
Gang PAN

2010 ◽  
Vol 20 (06) ◽  
pp. 437-445 ◽  
Author(s):  
SNJEZANA SOLTIC ◽  
NIKOLA KASABOV

This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.


Photoniques ◽  
2020 ◽  
pp. 26-29
Author(s):  
Venkata Anirudh Pammi ◽  
Sylvain Barbay

Spiking micro-lasers are interesting neuromorphic building blocks to realize all-optical spiking neural networks. Optical spike-based computing offers speed and parallelism of optical technologies combined with a sparse way of representing information in spikes, thus with a potential for efficient brain-inspired computing. This article reviews some of the latest advances in this field using single and coupled semiconductor excitable micro-lasers.


Sign in / Sign up

Export Citation Format

Share Document