neuromorphic computing
Recently Published Documents


TOTAL DOCUMENTS

844
(FIVE YEARS 540)

H-INDEX

42
(FIVE YEARS 17)

2022 ◽  
Vol 23 ◽  
pp. 100681
Author(s):  
Naveen Kumar ◽  
Malkeshkumar Patel ◽  
Thanh Tai Nguyen ◽  
Priyanka Bhatnagar ◽  
Joondong Kim

Author(s):  
Jun Li ◽  
Shengkai Wen ◽  
Dongliang Jiang ◽  
Linkang Li ◽  
Jianhua Zhang

Abstract In recent years, the research interest in brain-inspired light-stimulated artificial synaptic electronic devices has greatly increased, due to their great potential in constructing low-power, high-efficiency, and high-speed neuromorphic computing systems. However, in the field of electronic synaptic device simulation, the development of three-terminal synaptic transistors with low manufacturing cost and excellent memory function still faces huge challenges. Here, a fully solution-processed InSnO/HfGdOx thin film transistor (TFT) is fabricated by a simple and convenient solution process to verify the feasibility of light-stimulated artificial synapses. This experiment investigated the electrical and synaptic properties of the device under light stimulation conditions. The device successfully achieved some important synaptic properties, such as paired-pulse facilitation (PPF), excitatory postsynaptic current (EPSC) and the transition from short-term memory (STM) to long-term memory (LTM). In addition, the device also exhibits brain-like memory and learning behaviors under different colors of light stimulation. This work provides an important strategy for the realization of light-stimulated artificial synapses and may have good applications in the field of artificial neuromorphic computing by light signals in the future.


2022 ◽  
pp. 2101323
Author(s):  
Sungmun Song ◽  
Woori Ham ◽  
Gyuil Park ◽  
Wonwoo Kho ◽  
Jisoo Kim ◽  
...  

Author(s):  
Fangsheng Qian ◽  
Xiaobo Bu ◽  
Junjie Wang ◽  
Ziyu Lv ◽  
Su-Ting Han ◽  
...  

Abstract Brain-inspired neuromorphic computing has been extensively researched, taking advantage of increased computer power, the acquisition of massive data, and algorithm optimization. Neuromorphic computing requires mimicking synaptic plasticity and enables near-in-sensor computing. In synaptic transistors, how to elaborate and examine the link between microstructure and characteristics is a major difficulty. Due to the absence of interlayer shielding effects, defect-free interfaces, and wide spectrum responses, reducing the thickness of organic crystals to the 2D limit has a lot of application possibilities in this computing paradigm. This paper presents an update on the progress of 2D organic crystal-based transistors for data storage and neuromorphic computing. The promises and synthesis methodologies of 2D organic crystals are summarized. Following that, applications of 2D organic crystals for ferroelectric nonvolatile memory, circuit-type optoelectronic synapses, and neuromorphic computing are addressed. Finally, new insights and challenges for the field's future prospects are presented, pushing the boundaries of neuromorphic computing even farther.


Author(s):  
Dennis Valbjørn Christensen ◽  
Regina Dittmann ◽  
Bernabe Linares-Barranco ◽  
Abu Sebastian ◽  
Manuel Le Gallo ◽  
...  

Abstract Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In the Von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018 calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this Roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The Roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this Roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community.


Author(s):  
Ben Walters ◽  
Corey Lammie ◽  
Shuangming Yang ◽  
Mohan Jacob ◽  
Mostafa Rahimi Azghadi

Memristive devices being applied in neuromorphic computing are envisioned to significantly improve the power consumption and speed of future computing platforms. The materials used to fabricate such devices will play a significant role in their viability. Graphene is a promising material, with superb electrical properties and the ability to be produced sustainably. In this paper, we demonstrate that a fabricated graphene-pentacene memristive device can be used as synapses within Spiking Neural Networks (SNNs) to realise Spike Timing Dependent Plasticity (STDP) for unsupervised learning in an efficient manner. Specifically, we verify operation of two SNN architectures tasked for single digit (0-9) classification: (i) a simple single-layer network, where inputs are presented in 5x5 pixel resolution, and (ii) a larger network capable of classifying the Modified National Institute of Standards and Technology (MNIST) dataset, where inputs are presented in 28x28 pixel resolution. Final results demonstrate that for 100 output neurons, after one training epoch, a test set accuracy of up to 86% can be achieved, which is higher than prior art using the same number of output neurons. We attribute this performance improvement to homeostatic plasticity dynamics that we used to alter the threshold of neurons during training. Our work presents the first investigation of the use of green-fabricated graphene memristive devices to perform a complex pattern classification task. This can pave the way for future research in using graphene devices with memristive capabilities in neuromorphic computing architectures. In favour of reproducible research, we make our code and data publicly available https://anonymous.4open.science/r/c69ab2e2-b672-4ebd-b266-987ee1fd65e7.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Danijela Marković ◽  
Matthew W. Daniels ◽  
Pankaj Sethi ◽  
Andrew D. Kent ◽  
Mark D. Stiles ◽  
...  

2022 ◽  
Vol 120 (2) ◽  
pp. 021901
Author(s):  
Yue Li ◽  
Han Xu ◽  
Jikai Lu ◽  
Zuheng Wu ◽  
Shuyu Wu ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujie Wu ◽  
Rong Zhao ◽  
Jun Zhu ◽  
Feng Chen ◽  
Mingkun Xu ◽  
...  

AbstractThere are two principle approaches for learning in artificial intelligence: error-driven global learning and neuroscience-oriented local learning. Integrating them into one network may provide complementary learning capabilities for versatile learning scenarios. At the same time, neuromorphic computing holds great promise, but still needs plenty of useful algorithms and algorithm-hardware co-designs to fully exploit its advantages. Here, we present a neuromorphic global-local synergic learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity. It can meta-learn local plasticity and receive top-down supervision information for multiscale learning. We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors. It achieves significantly higher performance than single-learning methods. We further implement the model in the Tianjic neuromorphic platform by exploiting algorithm-hardware co-designs and prove that the model can fully utilize neuromorphic many-core architecture to develop hybrid computation paradigm.


Author(s):  
Zheqi Yu ◽  
Adnan Zahid ◽  
Shuja Ansari ◽  
Hasan Abbas ◽  
Hadi Heidari ◽  
...  

Aiming at the self-association feature of the Hopfield neural network, we can reduce the need for extensive sensor training samples during human behavior recognition. For a training algorithm to obtain a general activity feature template with only one time data preprocessing, this work proposes a data preprocessing framework that is suitable for neuromorphic computing. Based on the preprocessing method of the construction matrix and feature extraction, we achieved simplification and improvement in the classification of output of the Hopfield neuromorphic algorithm. We assigned different samples to neurons by constructing a feature matrix, which changed the weights of different categories to classify sensor data. Meanwhile, the preprocessing realizes the sensor data fusion process, which helps improve the classification accuracy and avoids falling into the local optimal value caused by single sensor data. Experimental results show that the framework has high classification accuracy with necessary robustness. Using the proposed method, the classification and recognition accuracy of the Hopfield neuromorphic algorithm on the three classes of human activities is 96.3%. Compared with traditional machine learning algorithms, the proposed framework only requires learning samples once to get the feature matrix for human activities, complementing the limited sample databases while improving the classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document