scholarly journals Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jino Heo ◽  
Seong-Gon Choi

AbstractWe propose a photonic procedure using cross-Kerr nonlinearities (XKNLs) to encode single logical qubit information onto four-photon decoherence-free states. In quantum information processing, a decoherence-free subspace can secure quantum information against collective decoherence. Therefore, we design a procedure employing nonlinear optical gates, which are composed of XKNLs, quantum bus beams, and photon-number-resolving measurements with linear optical devices, to conserve quantum information by encoding quantum information onto four-photon decoherence-free states (single logical qubit information). Based on our analysis in quantifying the affection (photon loss and dephasing) of the decoherence effect, we demonstrate the experimental condition to acquire the reliable procedure of single logical qubit information having the robustness against the decoherence effect.

2021 ◽  
Author(s):  
Jino Heo ◽  
Seong-Gon Choi

Abstract We propose a photonic procedure using cross-Kerr nonlinearities (XKNLs) to encode single logical qubit information onto four-photon decoherence-free states. In quantum information processing, a decoherence-free subspace can secure quantum information against collective decoherence. Therefore, we design a procedure employing nonlinear optical gates, which are composed of XKNLs, quantum bus beams, and photon-number-resolving measurements with linear optical devices, to conserve quantum information by encoding quantum information onto four-photon decoherence-free states (single logical qubit information). Based on our analysis in quantifying the affection (photon loss and dephasing) of the decoherence effect, we demonstrate the experimental condition to acquire the reliable procedure of single logical qubit information having the robustness against the decoherence effect.


2002 ◽  
Vol 2 (Special) ◽  
pp. 556-559
Author(s):  
K. Nemoto ◽  
S. Braunstein

A simulated photon-number detection via homodyne detectors is considered as a way to improve the efficiency near the single-photon level of communication. Current photon-number detectors at infrared wavelengths are typically characterized by their low detection efficiencies, which significantly reduce the mutual information of a bosonic communication channel. In order to avoid the inefficiency inherent in such direct photon-number detection, we evaluate an alternative set-up based on efficient dual homodyne detection. We show that replacing inefficient direct detectors with homodyne-based simulated direct detectors can yield significant improvements, even near the single-photon level of operation. However we argue that there is a fundamental limit on the ability of homodyne detection to simulate ideal photon number detection, considering the exponential gap between quantum and classical computers. This applies to arbitrarily complicated simulation strategies based on homodyne detection.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

Sign in / Sign up

Export Citation Format

Share Document