infrared wavelengths
Recently Published Documents


TOTAL DOCUMENTS

791
(FIVE YEARS 136)

H-INDEX

54
(FIVE YEARS 8)

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Peisong Wu ◽  
Lei Ye ◽  
Lei Tong ◽  
Peng Wang ◽  
Yang Wang ◽  
...  

AbstractWith the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of ~0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W−1 at 3.5 μm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.


2021 ◽  
Vol 2021 (12) ◽  
pp. 009
Author(s):  
Roy Maartens ◽  
José Fonseca ◽  
Stefano Camera ◽  
Sheean Jolicoeur ◽  
Jan-Albert Viljoen ◽  
...  

Abstract Measurements of galaxy clustering in upcoming surveys such as those planned for the Euclid and Roman satellites, and the SKA Observatory, will be sensitive to distortions from lensing magnification and Doppler effects, beyond the standard redshift-space distortions. The amplitude of these contributions depends sensitively on magnification bias and evolution bias in the galaxy number density. Magnification bias quantifies the change in the observed number of galaxies gained or lost by lensing magnification, while evolution bias quantifies the physical change in the galaxy number density relative to the conserved case. These biases are given by derivatives of the number density, and consequently are very sensitive to the form of the luminosity function. We give a careful derivation of the magnification and evolution biases, clarifying a number of results in the literature. We then examine the biases for a variety of surveys, encompassing galaxy surveys and line intensity mapping at radio and optical/near-infrared wavelengths.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3269
Author(s):  
Georgy A. Ermolaev ◽  
Kirill V. Voronin ◽  
Mikhail K. Tatmyshevskiy ◽  
Arslan B. Mazitov ◽  
Aleksandr S. Slavich ◽  
...  

Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245–3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Hessa Almatroushi ◽  
Hoor AlMazmi ◽  
Noora AlMheiri ◽  
Mariam AlShamsi ◽  
Eman AlTunaiji ◽  
...  

AbstractThe Emirates Mars Mission (EMM) – Hope Probe – was developed to understand Mars atmospheric circulation, dynamics, and processes through characterization of the Mars atmosphere layers and its interconnections enabled by a unique high-altitude (19,970 km periapse and 42,650 km apoapse) low inclination orbit that will offer an unprecedented local and seasonal time coverage over most of the planet. EMM has three scientific objectives to (A) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (B) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (C) characterize the spatial structure and variability of key constituents in the Martian exosphere. The EMM data products include a variety of spectral and imaging data from three scientific instruments measuring Mars at visible, ultraviolet, and infrared wavelengths and contemporaneously and globally sampled on both diurnal and seasonal timescale. Here, we describe our strategies for addressing each objective with these data in addition to the complementary science data, tools, and physical models that will facilitate our understanding. The results will also fill a unique role by providing diagnostics of the physical processes driving atmospheric structure and dynamics, the connections between the lower and upper atmospheres, and the influences of these on atmospheric escape.


2021 ◽  
Vol 923 (2) ◽  
pp. 186
Author(s):  
Sacha Schiffmann ◽  
Tomas Brage ◽  
Philip Gordon Judge ◽  
Alin Razvan Paraschiv ◽  
Kai Wang

Abstract We perform a detailed theoretical study of the atomic structure of ions with ns 2 np m ground configurations and focus on departures from LS coupling, which directly affect the Landé g factors of magnetic dipole lines between levels of the ground terms. Particular emphasis is given to astrophysically abundant ions formed in the solar corona (those with n = 2,3) with M1 transitions spanning a broad range of wavelengths. Accurate Landé g factors are needed to diagnose coronal magnetic fields using measurements from new instruments operating at visible and infrared wavelengths, such as the Daniel K. Inouye Solar Telescope. We emphasize an explanation of the dynamics of atomic structure effects for nonspecialists.


2021 ◽  
Vol 21 (11) ◽  
pp. 288
Author(s):  
Baskaran Shridharan ◽  
Blesson Mathew ◽  
Sabu Nidhi ◽  
Ravikumar Anusha ◽  
Roy Arun ◽  
...  

Abstract We present a catalog of 3339 hot emission-line stars (ELSs) identified from 451 695 O, B and A type spectra, provided by LAMOST Data Release 5 (DR5). We developed an automated Python routine that identified 5437 spectra having a peak between 6561 and 6568 Å. False detections and bad spectra were removed, leaving 4138 good emission-line spectra of 3339 unique ELSs. We re-estimated the spectral types of 3307 spectra as the LAMOST Stellar Parameter Pipeline (LASP) did not provide accurate spectral types for these emission-line spectra. As Herbig Ae/Be stars exhibit higher excess in near-infrared and mid-infrared wavelengths than classical Ae/Be stars, we relied on 2MASS and WISE photometry to distinguish them. Finally, we report 1089 classical Be, 233 classical Ae and 56 Herbig Ae/Be stars identified from LAMOST DR5. In addition, 928 B[em]/A[em] stars and 240 CAe/CBe potential candidates are identified. From our sample of 3339 hot ELSs, 2716 ELSs identified in this work do not have any record in the SIMBAD database and they can be considered as new detections. Identification of such a large homogeneous set of emission-line spectra will help the community study the emission phenomenon in detail without worrying about the inherent biases when compiling from various sources.


2021 ◽  
Author(s):  
Austin Bailey ◽  
Arundhati Deshmukh ◽  
Timothy Atallah ◽  
Ulugbek Barotov ◽  
Monica Pengshung ◽  
...  

Developing improved organic infrared emitters has wide-ranging applicability in fields such as bioimaging or energy harvesting. We synthesize redshifted analogues of C8S3, a well-known cyanine dye that self assembles into tubular aggregates which have attracted widespread attention as artificial photosynthetic complexes. Despite the elongated dye structure, the new pentamethine dyes retain their tubular self-assembly and emit at near-infrared wavelengths. Cryo-electron microscopy and detailed photophysical characterization of the new aggregates reveal similar absorption lineshapes with ~100 nm of redshift, as well as supramolecular morphologies that resemble their trimethine counterparts; the pentamethine aggregates generally show more disorder and decreased superradiance, suggesting that more ordered structures yield more robust photophysical properties. These results provide design principles of superradiant organic emitters, expand the chemical space of near-infrared aggregates, and introduce two additional wavelength-specific antennae as model systems for study.


2021 ◽  
Vol 5 (11) ◽  
pp. 264
Author(s):  
Theodore A. Grosson ◽  
Christopher M. Johns-Krull

Abstract Although thousands of exoplanets have now been discovered, there is still a significant lack of observations of young planets only a few Myr old. Thus there is little direct evidence available to differentiate between various models of planet formation. The detection of planets of this age would provide much-needed data that could help constrain the planet formation process. To explore what transit observations of such planets may look like, we model the effects of large starspots and dust clouds on the depths of exoplanet transits across multiple wavelengths. We apply this model to the candidate planet PTFO 8-8695b, whose depths vary significantly across optical and infrared wavelengths. Our model shows that, while large starspots can significantly increase the color dependence of planetary transits, a combination of starspots and a large cloud surrounding the planet is required to reproduce the observed transit depths across four wavelengths.


2021 ◽  
Author(s):  
Selim Elhadj ◽  
Craig Garvin ◽  
Andy Bayramian ◽  
William Clauson ◽  
Matthew Murachver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document