homodyne detection
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 68)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ninad Ramanand Jetty

Abstract In the absence of a signal field, vacuum entering through the empty beam splitter port is considered to be the sole contributor to the output noise of conventional two-port homodyne detection. We study a modified configuration that alters the input coefficient of vacuum, predicting an output noise less than that of the conventional configuration. Measurements, however, reveal identical output noise profiles for both the configurations. We explain the observations in terms of the incident field noise alone, and suggest that vacuum does not contribute to homodyne noise or shot-noise. We extend our results to the measurement of squeezed light, with non-ideal detectors.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Zhenzhen Xiao ◽  
Zhengmao Wu ◽  
Zaifu Jiang ◽  
Dianzuo Yue ◽  
Guangqiong Xia

In some previous reports about frequency-modulated continuous-wave (FMCW) Lidar, observing the longer waveform of a de-chirped signal is considered an effective scheme for further improving the ranging resolution. In this work, the ranging resolution of a FMCW Lidar is experimentally investigated, and the feasibility of such a scheme is tested. During the experiment, a FMCW signal is generated via a Mach–Zehnder modulator in the transmitted port. In the received port, the de-chirped signal is extracted based on a homodyne detection scheme and is analyzed by an electrical spectrum analyzer. Two different methods are adopted to determine the ranging resolution. One is based on a single target, for which the ranging resolution is obtained through inspecting the shift of spectral peak position as the target moves. The other is based on two targets, for which the ranging resolution is acquired through inspecting the variation of spectrum distribution as the spacing of two targets changes. The experimental results demonstrate that extending the observed duration of the de-chirped signal cannot improve the ranging resolution, and the corresponding physical mechanism is revealed.


2021 ◽  
Author(s):  
yuhang tian ◽  
xiaocong sun ◽  
Yajun Wang ◽  
Qinghui Li ◽  
Long Tian ◽  
...  
Keyword(s):  

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
G. Cerchiari ◽  
L. Dania ◽  
D. S. Bykov ◽  
R. Blatt ◽  
T. E. Northup

Author(s):  
Alin Jderu ◽  
Marcelo A. Soto ◽  
Marius Enachescu ◽  
Dominik Ziegler

AbstractWe report on the development and implementation of an optical frequency-domain reflectometer (OFDR) sensing platform. OFDR allows to measure changes in strain and temperature using optical fibers with a length of several tens of meters with very high spatial resolution. We discuss the operation principles and challenges to implement an OFDR system using optical homodyne detection based on a dual-polarization 90° optical hybrid. Our setup exhibits polarization and phase diversity, fully automated data acquisition and data processing using a LabVIEW-based implemented software environment. Using an optical hybrid enables to discriminate phase, amplitude and polarization by interfering the Rayleigh scatter signal and a local oscillator with four 90° phase stepped interferences between the two signals. Without averaging and a fast acquisition time of 230 ms, our preliminary results show a spatial resolution of 5 cm and a temperature resolution of about 0.1 Kelvin on a 3 m-long fiber.


Optik ◽  
2021 ◽  
pp. 168165
Author(s):  
Neha Rani ◽  
Preeti Singh ◽  
Pardeep Kaur
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qingle Wang ◽  
Yami Fang ◽  
Xiaoping Ma ◽  
Dong Li

AbstractWe theoretically analyze the phase sensitivity of an $\operatorname{SU}(1,1)$ SU ( 1 , 1 ) interferometer with various input states by product detection in this paper. This interferometer consists of two parametric amplifiers that play the role of beam splitters in a traditional Mach–Zehnder interferometer. The product of the amplitude quadrature of one output mode and the momentum quadrature of the other output mode is measured via balanced homodyne detection. We show that product detection has the same phase sensitivity as parity detection for most cases, and it is even better in the case with two coherent states at the input ports. The phase sensitivity is also compared with the Heisenberg limit and the quantum Cramér–Rao bound of the $\operatorname{SU}(1,1)$ SU ( 1 , 1 ) interferometer. This detection scheme can be easily implemented with current homodyne technology, which makes it highly feasible. It can be widely applied in the field of quantum metrology.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 291
Author(s):  
Likun Zhou ◽  
Pan Liu ◽  
Guang-Ri Jin

Performing homodyne detection at a single output port of a squeezed-state light interferometer and then separating the measurement quadrature into several bins can realize superresolving and supersensitive phase measurements. However, the phase resolution and the achievable phase sensitivity depend on the bin size that is adopted in the data processing. By maximizing classical Fisher information, we analytically derive an optimal value of the bin size and the associated best sensitivity for the case of three bins, which can be regarded as a three-outcome measurement. Our results indicate that both the resolution and the achievable sensitivity are better than that of the previous binary–outcome case. Finally, we present an approximate maximum Likelihood estimator to asymptotically saturate the ultimate lower bound of the phase sensitivity.


Author(s):  
Ganael Roeland ◽  
Ulysse Chabaud ◽  
Mattia Walschaers ◽  
Frederic Grosshans ◽  
Valentina Parigi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document