scholarly journals Bypassing use-dependent plasticity in the primary motor cortex to preserve adaptive behavior

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Bosc ◽  
G. Bucchioni ◽  
B. Ribot ◽  
T. Michelet

AbstractBehavioral adaptation, a central feature of voluntary movement, is known to rely on top-down cognitive control. For example, the conflict-adaptation effect on tasks such as the Stroop task leads to better performance (e.g. shorter reaction time) for incongruent trials following an already incongruent one. The role of higher-order cortices in such between-trial adjustments is well documented, however, a specific involvement of the primary motor cortex (M1) has seldom been questioned. Here we studied changes in corticospinal excitability associated with the conflict-adaptation process. For this, we used single-pulse transcranial-magnetic stimulation (TMS) applied between two consecutive trials in an interference flanker task, while measuring motor-evoked potentials (MEPs) after agonistic and antagonistic voluntary movements. In agonist movement, MEP amplitude was modulated by recent movement history with an increase favoring movement repetition, but no significant change in MEP size was observed whether a previous trial was incongruent or congruent. Critically, for an antagonist movement, the relative size of MEPs following incongruent trials correlated positively with the strength of behavioral adaptation measured as the degree of RT shortening across subjects. This post-conflict increase in corticospinal excitability related to antagonist muscle recruitment could compensate for a potential deleterious bias due to recent movement history that favors the last executed action. Namely, it prepares the motor system to rapidly adapt to a changing and unpredictable context by equalizing the preparation for all possible motor responses.

2021 ◽  
Vol 1 (3) ◽  
pp. 100028
Author(s):  
Etienne Sallard ◽  
Jaimie Lee Rohrbach ◽  
Catherine Brandner ◽  
Nicolas Place ◽  
Jérôme Barral

2004 ◽  
Vol 115 (7) ◽  
pp. 1519-1526 ◽  
Author(s):  
Alexander Peinemann ◽  
Bibiana Reimer ◽  
Christian Löer ◽  
Angelo Quartarone ◽  
Alexander Münchau ◽  
...  

Cortex ◽  
2018 ◽  
Vol 103 ◽  
pp. 142-152 ◽  
Author(s):  
Lukas Schilberg ◽  
Tahnée Engelen ◽  
Sanne ten Oever ◽  
Teresa Schuhmann ◽  
Beatrice de Gelder ◽  
...  

2009 ◽  
Vol 102 (6) ◽  
pp. 3180-3190 ◽  
Author(s):  
Monika Pötter-Nerger ◽  
Sarah Fischer ◽  
Claudia Mastroeni ◽  
Sergiu Groppa ◽  
Günther Deuschl ◽  
...  

Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1HAND) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression (LTD)–like or long-term potentiation (LTP)–like plasticity in left M1HAND through different afferents. We hypothesized that the left M1HAND would integrate LTP- and LTD-like plasticity in a homeostatic fashion. In ten healthy volunteers, low-intensity repetitive transcranial magnetic stimulation (rTMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1HAND via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve and left M1HAND to induce spike-time–dependent plasticity in sensory-to-motor inputs to left M1HAND. We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PASN20+2ms) or an LTD-like decrease (PASN20−5ms) in corticospinal excitability. The amplitude of motor-evoked potentials was recorded from intrinsic hand muscles to assess stimulation-induced changes in corticospinal excitability. Premotor-to-motor preconditioning triggered a homeostatic response to subsequent sensory-to-motor PAS. After facilitatory 5 Hz rTMS, “facilitatory” PASN20+2ms suppressed corticospinal excitability. Likewise, “inhibitory” PASN20−5ms facilitated corticospinal excitability after “inhibitory” 1 Hz rTMS. There was a negative linear relationship between the excitability changes induced by PMD rTMS and those elicited by subsequent PAS. Excitability changes were not paralleled by changes in performance during a finger-tapping task. These results provide evidence for a homeostatic response pattern in the human M1HAND that integrates acute plastic changes evoked through different “input channels.”


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5588 ◽  
Author(s):  
Hai-Jiang Meng ◽  
Yan-Ling Pi ◽  
Ke Liu ◽  
Na Cao ◽  
Yan-Qiu Wang ◽  
...  

Background Both motor imagery (MI) and motor execution (ME) can facilitate motor cortical excitability. Although cortical excitability is modulated by intracortical inhibitory and excitatory circuits in the human primary motor cortex, it is not clear which intracortical circuits determine the differences in corticospinal excitability between ME and MI. Methods We recruited 10 young healthy subjects aged 18−28 years (mean age: 22.1 ± 3.14 years; five women and five men) for this study. The experiment consisted of two sets of tasks involving grasp actions of the right hand: imagining and executing them. Corticospinal excitability and short-interval intracortical inhibition (SICI) were measured before the interventional protocol using transcranial magnetic stimulation (baseline), as well as at 0, 20, and 40 min (T0, T20, and T40) thereafter. Results Facilitation of corticospinal excitability was significantly greater after ME than after MI in the right abductor pollicis brevis (APB) at T0 and T20 (p < 0.01 for T0, and p < 0.05 for T20), but not in the first dorsal interosseous (FDI) muscle. On the other hand, no significant differences in SICI between ME and MI were found in the APB and FDI muscles. The facilitation of corticospinal excitability at T20 after MI correlated with the Movement Imagery Questionnaire (MIQ) scores for kinesthetic items (Rho = −0.646, p = 0.044) but did not correlate with the MIQ scores for visual items (Rho = −0.265, p = 0.458). Discussion The present results revealed significant differences between ME and MI on intracortical excitatory circuits of the human motor cortex, suggesting that cortical excitability differences between ME and MI may be attributed to the activation differences of the excitatory circuits in the primary motor cortex.


2016 ◽  
Vol 127 (1) ◽  
pp. 740-747 ◽  
Author(s):  
Mitchell R. Goldsworthy ◽  
Ann-Maree Vallence ◽  
Nicolette A. Hodyl ◽  
John G. Semmler ◽  
Julia B. Pitcher ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Gijs van Elswijk ◽  
Bert U. Kleine ◽  
Sebastiaan Overeem ◽  
Dick F. Stegeman

Behavioral studies using motor preparation paradigms have revealed that increased expectancy of a response signal shortens reaction times (RTs). Neurophysiological data suggest that in such paradigms, not only RT but also neuronal activity in the motor structures involved is modulated by expectancy of behaviorally relevant events. Here, we directly tested whether expectancy of a response signal modulates excitability of the corticospinal system used in the subsequent movement. We combined single- and paired-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex with a simple RT task with variable preparatory delays. We found that, in line with typical behavioral observations, the subjects' RTs decreased with increasing response signal expectancy. TMS results revealed a modulation of corticospinal excitability in correspondence with response signal expectancy. Besides an increased excitability over the time-course of the preparatory delay, corticospinal excitability transiently increased whenever a response signal was expected. Paired-pulse TMS showed that this modulation is unlikely to be mediated by excitability changes in interneuronal inhibitory or facilitatory networks in the primary motor cortex. Changes in corticospinal synchronization or other mechanisms involving spinal circuits are candidates mediating the modulation of corticospinal excitability by expectancy.


Sign in / Sign up

Export Citation Format

Share Document