homeostatic response
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Adi Segev ◽  
Shany Krispin ◽  
Anouk M Olthof ◽  
Katery Hyatt ◽  
Liran Haller ◽  
...  

When exposed to low temperature, homeothermic vertebrates maintain internal body temperature by activating thermogenesis and by altered metabolism, synchronized by neuroendocrine responses. Although such physiological responses also occur in poikilothermic vertebrates, the prevailing notion is that their reactions are passive. Here, we explored molecular hypothalamic and physiological responses to cold stress in the tropical poikilotherm Nile tilapia (Oreochromis niloticus). We show that cold exposed tilapia exhibit complex homeostatic responses, including increased hypothalamic oxytocin, plasma glucose and cortisol concomitant with reduced plasma lactate and metabolic rate. Pharmacological or genetic blockage of oxytocin signaling further affected metabolic rate in two cold-exposed poikilothermic models. This indicates that oxytocin, a known thermoregulator in homeotherms, actively regulates temperature-related homeostasis in poikilotherms. Overall, our findings show that the brain of poikilotherms actively responds to cold temperature by regulating metabolic physiology. Moreover, we identify oxytocin signaling as an adaptive and evolutionarily conserved metabolic regulator of temperature-related homeostasis.


2021 ◽  
Author(s):  
Maxim Katsenelson ◽  
Ilana Shapira ◽  
Eman Abbas ◽  
Boaz Styr ◽  
Saba Aid ◽  
...  

Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling network-wide homeostatic response remains largely unknown. Here we show that deletion of insulin-like growth factor-1 receptor (IGF1R), a well-known regulator of neurodevelopment and ageing, limits firing rate homeostasis in response to inactivity, without altering the baseline firing rate distribution. Disruption of both synaptic and intrinsic homeostatic plasticity contributed to deficient firing rate homeostatic response. At the cellular level, a fraction of IGF1Rs was localized in mitochondria with the mitochondrial calcium uniporter complex (MCUc). IGF1R deletion suppressed mitochondrial Ca2+ (mitoCa2+) evoked by spike bursts by weakening mitochondria-to-cytosol Ca2+ coupling. This coupling was homeostatically maintained following inactivity in control, but upregulated in IGF1R-deficient neurons. MCUc overexpression in IGF1R-deficient neurons rescued the deficits in spike-to-mitoCa2+ coupling and firing rate homeostasis. Our findings highlight IGF1R as a key regulator of the integrated homeostatic response by tuning mitochondrial temporal filtering. Decline in mitochondrial reliability for burst transfer may drive dysregulation of firing rate homeostasis in brain disorders associated with abnormal IGF1R / MCUc signaling.


2021 ◽  
Author(s):  
Vera Valakh ◽  
Xiaoyue Aelita Zhu ◽  
Derek L Wise ◽  
Stephen Van Hooser ◽  
Robin Schectman ◽  
...  

Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here we uncover negative regulation of cortical network homeostasis by PAR bZIP family of transcription factors. In their absence the network response to prolonged activity withdrawal is too strong and this is driven by exaggerated upregulation of recurrent excitatory synaptic transmission. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.


2021 ◽  
Vol 118 (35) ◽  
pp. e2107673118
Author(s):  
Chunyi Liu ◽  
Thomas Jursa ◽  
Michael Aschner ◽  
Donald R. Smith ◽  
Somshuvra Mukhopadhyay

Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity—elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.


2021 ◽  
Author(s):  
Elham Jalalvand ◽  
Jonatan Alvelid ◽  
Giovanna Coceano ◽  
Steven Edwards ◽  
Brita Robertson ◽  
...  

AbstractThe spatial location of cerebrospinal fluid contacting (CSF-c) neurons enables important regulatory homeostatic functions regarding pH and motion control. Their intricate organization, facing the central canal and extending across the spinal cord, in relation to specific subtypes is poorly understood. This calls for imaging methods with a high spatial resolution (5-10 nm) to resolve the synaptic and ciliary compartments of each individual cell to elucidate their signalling pathways and enough throughput to dissect the cellular organization. Here, light-sheet and expansion microscopy resolved the persistent ventral and lateral organization of dopamine and somatostatin CSF-c neuronal types.The number of somatostatin-containing dense core vesicles, resolved by STED microscopy, was shown to be markedly reduced upon each exposure to alkaline or acidic pH inhibiting any movement as part of a homeostatic response. Their cilia symmetry was unravelled by ExSTED as sensory in contrast with the motile one found in the dopaminergic ph insensitive neurons. This novel experimental workflow elucidates the functional role of CSF-c neuron subtypes in situ paving the way for further spatial and functional cell type classification.


Author(s):  
Elena Ciaglia ◽  
Valentina Lopardo ◽  
Francesco Montella ◽  
Carmine Sellitto ◽  
Valentina Manzo ◽  
...  

Abstract Aging and comorbidities make individuals at greatest risk of COVID-19 serious illness and mortality due to senescence-related events and deleterious inflammation. Long-living individuals (LLIs) are less susceptible to inflammation and develop more resiliency to COVID-19. As demonstrated, LLIs are characterized by high circulating levels of BPIFB4, a protein involved in homeostatic response to inflammatory stimuli. Also, LLIs show enrichment of homozygous genotype for the minor alleles of a 4 missense single-nucleotide polymorphism haplotype (longevity-associated variant [LAV]) in BPIFB4, able to counteract progression of diseases in animal models. Thus, the present study was designed to assess the presence and significance of BPIFB4 level in COVID-19 patients and the potential therapeutic use of LAV-BPIFB4 in fighting COVID-19. BPIFB4 plasma concentration was found significantly higher in LLIs compared to old healthy controls while it significantly decreased in 64 COVID-19 patients. Further, the drop in BPIFB4 values correlated with disease severity. Accordingly to the LAV-BPIFB4 immunomodulatory role, while lysates of SARS-CoV-2-infected cells induced an inflammatory response in healthy peripheral blood mononuclear cells in vitro, the co-treatment with recombinant protein (rh) LAV-BPIFB4 resulted in a protective and self-limiting reaction, culminating in the downregulation of CD69 activating-marker for T cells (both TCD4+ and TCD8+) and in MCP-1 reduction. On the contrary, rhLAV-BPIFB4 induced a rapid increase in IL-18 and IL-1b levels, shown largely protective during the early stages of the virus infection. This evidence, along with the ability of rhLAV-BPIFB4 to counteract the cytotoxicity induced by SARS-CoV-2 lysate in selected target cell lines, corroborates BPIFB4 prognostic value and open new therapeutic possibilities in more vulnerable people.


2021 ◽  
Author(s):  
Sara Calafate ◽  
Gokhan Ozturan ◽  
Nicky Thrupp ◽  
Jeroen Vanderlinden ◽  
Wei-Ting Chen ◽  
...  

In Alzheimers disease (AD), pathophysiological changes in the hippocampus cause deficits in episodic memory formation, leading to cognitive impairment. Neuronal hyperactivity is observed early in AD. Here, we find that homeostatic mechanisms transiently counteract increased neuronal activity in the hippocampal CA1 region of the AppNL-G-F humanized knock-in mouse model for AD, but ultimately fail to maintain neuronal activity at set-point. Spatial transcriptomic analysis in CA1 during the homeostatic response identifies the Melanin-Concentrating Hormone (MCH)-encoding gene. MCH is expressed in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH regulates synaptic plasticity genes and synaptic downscaling in hippocampal neurons. Furthermore, MCH-neuron activity is impaired in AppNL-G-F mice, disrupting sleep-dependent homeostatic plasticity and stability of neuronal activity in CA1. Finally, we find perturbed MCH-axon morphology in CA1 early in AppNL-G-F mice and in AD patients. Our work identifies dysregulation of the MCH-system as a key player in aberrant neuronal activity in the early stages of AD.


SLEEP ◽  
2021 ◽  
Author(s):  
Jelena Skorucak ◽  
Nathan Weber ◽  
Mary A Carskadon ◽  
Chelsea Reynolds ◽  
Scott Coussens ◽  
...  

Abstract The high prevalence of chronic sleep restriction in adolescents underscores the importance of understanding how adolescent sleep is regulated under such conditions. One component of sleep regulation is a homeostatic process: if sleep is restricted, then sleep intensity increases. Our knowledge of this process is primarily informed by total sleep deprivation studies and has been incorporated in mathematical models of human sleep regulation. Several animal studies, however, suggest that adaptation occurs in chronic sleep restriction conditions, showing an attenuated or even decreased homeostatic response. We investigated the homeostatic response of adolescents to different sleep opportunities. Thirty-four participants were allocated to one of three groups with 5, 7.5 or 10 h of sleep opportunity per night for 5 nights. Each group underwent a protocol of 9 nights designed to mimic a school week between 2 weekends: 2 baseline nights (10 h sleep opportunity), 5 condition nights (5, 7.5 or 10 h), and two recovery nights (10 h). Measures of sleep homeostasis (slow-wave activity and slow-wave energy) were calculated from frontal and central EEG derivations and compared to predictions derived from simulations of the homeostatic process of the two-process model of sleep regulation. Only minor differences were found between empirical data and model predictions, indicating that sleep homeostasis is preserved under chronic sleep restriction in adolescents. These findings improve our understanding of effects of repetitive short sleep in adolescents.


2021 ◽  
Author(s):  
Kristina Desch ◽  
Julian D. Langer ◽  
Erin M. Schuman

SummaryHomeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal and synaptic processes, but it has not been studied on a global, proteome-wide scale during synaptic scaling. To examine this, we used LC-MS/MS analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 hours. Out of 45,000 phosphorylation events measured, ~3,300 (associated with 1,280 phospho-proteins) were regulated by homeostatic scaling. The activity-sensitive phosphoproteins were predominantly located at synapses and involved in cytoskeletal reorganization. We identified many early transient phosphorylation events which could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation was reciprocally regulated by up- or down-scaling, suggesting that the mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis.


Sign in / Sign up

Export Citation Format

Share Document