scholarly journals Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex

2007 ◽  
Vol 26 (6) ◽  
pp. 1511-1521 ◽  
Author(s):  
Wen Luo ◽  
Annita Peterson ◽  
Benjamin A Garcia ◽  
Gary Coombs ◽  
Bente Kofahl ◽  
...  
2020 ◽  
Vol 133 (22) ◽  
pp. jcs244830
Author(s):  
Kazunari Yamashita ◽  
Keiko Mizuno ◽  
Kana Furukawa ◽  
Hiroko Hirose ◽  
Natsuki Sakurai ◽  
...  

ABSTRACTCell polarity is essential for various asymmetric cellular events, and the partitioning defective (PAR) protein PAR3 (encoded by PARD3 in mammals) plays a unique role as a cellular landmark to establish polarity. In epithelial cells, PAR3 localizes at the subapical border, such as the tight junction in vertebrates, and functions as an apical determinant. Although we know a great deal about the regulators of PAR3 localization, how PAR3 is concentrated and localized to a specific membrane domain remains an important question to be clarified. In this study, we demonstrate that ASPP2 (also known as TP53BP2), which controls PAR3 localization, links PAR3 and protein phosphatase 1 (PP1). The ASPP2–PP1 complex dephosphorylates a novel phosphorylation site, Ser852, of PAR3. Furthermore, Ser852- or Ser889-unphosphorylatable PAR3 mutants form protein clusters, and ectopically localize to the lateral membrane. Concomitance of clustering and ectopic localization suggests that PAR3 localization is a consequence of local clustering. We also demonstrate that unphosphorylatable forms of PAR3 exhibited a low molecular turnover and failed to coordinate rapid reconstruction of the tight junction, supporting that both the phosphorylated and dephosphorylated states are essential for the functional integrity of PAR3.


Biochemistry ◽  
2011 ◽  
Vol 50 (7) ◽  
pp. 1238-1246 ◽  
Author(s):  
Barbara Dancheck ◽  
Michael J. Ragusa ◽  
Marc Allaire ◽  
Angus C. Nairn ◽  
Rebecca Page ◽  
...  

2003 ◽  
Vol 278 (21) ◽  
pp. 18817-18823 ◽  
Author(s):  
Paulina Wakula ◽  
Monique Beullens ◽  
Hugo Ceulemans ◽  
Willy Stalmans ◽  
Mathieu Bollen

2017 ◽  
Vol 45 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Iris Verbinnen ◽  
Monica Ferreira ◽  
Mathieu Bollen

Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a substantial fraction of phosphoserine/threonine dephosphorylation reactions. It forms stable complexes with PP1-interacting proteins (PIPs) that guide the phosphatase throughout its life cycle and control its fate and function. The diversity of PIPs is huge (≈200 in vertebrates), and most of them combine short linear motifs to form large and unique interaction interfaces with PP1. Many PIPs have separate domains for PP1 anchoring, PP1 regulation, substrate recruitment and subcellular targeting, which enable them to direct associated PP1 to a specific subset of substrates and mediate acute activity control. Hence, PP1 functions as the catalytic subunit of a large number of multimeric holoenzymes, each with its own subset of substrates and mechanism(s) of regulation.


Diabetes ◽  
1996 ◽  
Vol 45 (3) ◽  
pp. 322-327 ◽  
Author(s):  
E. D. Crook ◽  
D. A. McClain

Sign in / Sign up

Export Citation Format

Share Document