muscle glycogen
Recently Published Documents


TOTAL DOCUMENTS

1435
(FIVE YEARS 101)

H-INDEX

89
(FIVE YEARS 6)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 828
Author(s):  
Lee M. Margolis ◽  
J Philip Karl ◽  
Marques A. Wilson ◽  
Julie L. Coleman ◽  
Claire C. Whitney ◽  
...  

This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h of isocaloric refeeding to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate 1.0 g/kg fat) glycogen. Participants then performed 80 min of cycling (64 ± 3% VO2 peak) while ingesting 146 g carbohydrate. Serum was collected before glycogen depletion under resting and fasted conditions (BASELINE), and before (PRE) and after (POST) exercise. Changes in metabolite profiles were calculated by subtracting BASELINE from PRE and POST within LOW and AD. There were greater increases (p < 0.05, Q < 0.10) in 64% of branched-chain amino acids (BCAA) metabolites and 69% of acyl-carnitine metabolites in LOW compared to AD. Urea and 3-methylhistidine had greater increases (p < 0.05, Q < 0.10) in LOW compared to AD. Changes in metabolomics profiles indicate a greater reliance on BCAA catabolism for substrate oxidation when exercise is initiated with low glycogen stores. These findings provide a mechanistic explanation for anabolic resistance associated with low muscle glycogen, and suggest that exogenous BCAA requirements to optimize muscle recovery are likely greater than current recommendations.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Kaito Iwayama ◽  
Yoko Tanabe ◽  
Fumiya Tanji ◽  
Takahiro Ohnishi ◽  
Hideyuki Takahashi

AbstractIt has been suggested that glycogen functions not only in carbohydrate energy storage, but also as molecular sensors capable of activating lipolysis. This study aimed to compare the variation in liver and muscle glycogen during the day due to different timing of exercise. Nine healthy young men participated in two trials in which they performed a single bout of exercise at 70% of their individual maximal oxygen uptake for 60 min in the post-absorptive (morning) or post-prandial (afternoon) state. Liver and muscles glycogen levels were measured using carbon magnetic resonance spectroscopy (13C MRS). Diurnal variations in liver and muscle glycogen compared to baseline levels were significantly different depending on the timing of exercise. The effect of the timing of exercise on glycogen fluctuation is known to be related to a variety of metabolic signals, and the results of this study will be useful for future research on energy metabolism.


Author(s):  
Yutaka Matsunaga ◽  
Kenya Takahashi ◽  
Yumiko Takahashi ◽  
Hideo Hatta

Abstract Background When a high-carbohydrate diet is ingested, whether as small frequent snacks or as large meals, there is no difference between the two with respect to post-exercise glycogen storage for a period of 24 h. However, the effect of carbohydrate intake frequency on glycogen recovery a few hours after exercise is not clear. Athletes need to recover glycogen quickly after physical exercise as they sometimes exercise multiple times a day. The aim of this study was to determine the effect of carbohydrate intake at different frequencies on glycogen recovery during the first few hours after exercise. Methods After 120 min of fasting, 6-week-old male ICR mice were subjected to treadmill running exercise (20 m/min for 60 min) to decrease the levels of muscle and liver glycogen. Mice were then given glucose as a bolus (1.2 mg/g of body weight [BW], immediately after exercise) or as a pulse (1.2 mg/g of BW, every 15 min × 4 times). Following this, the blood, tissue, and exhaled gas samples were collected. Results In the bolus group, blood glucose concentration was significantly lower and plasma insulin concentration was significantly higher than those in the pulse group (p < 0.05). The plantaris muscle glycogen concentration in the bolus group was 25.3% higher than that in the pulse group at 60 min after glucose ingestion (p < 0.05). Liver glycogen concentration in the pulse group was significantly higher than that in the bolus group at 120 min after glucose ingestion (p < 0.05). Conclusions The present study showed that ingesting a large amount of glucose immediately after exercise increased insulin secretion and enhanced muscle glycogen recovery, whereas frequent and small amounts of glucose intake was shown to enhance liver glycogen recovery.


2021 ◽  
Vol 45 (5) ◽  
pp. 797-797
Author(s):  
Hui Ran ◽  
Yao Lu ◽  
Qi Zhang ◽  
Qiuyue Hu ◽  
Junmei Zhao ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3335
Author(s):  
Laís Monteiro Rodrigues Loureiro ◽  
Eugênio dos Santos dos Santos Neto ◽  
Guilherme Eckhardt Molina ◽  
Angélica Amorim Amato ◽  
Sandra Fernandes Arruda ◽  
...  

Coffee is one of the most widely consumed beverages worldwide and caffeine is known to improve performance in physical exercise. Some substances in coffee have a positive effect on glucose metabolism and are promising for post-exercise muscle glycogen recovery. We investigated the effect of a coffee beverage after exhaustive exercise on muscle glycogen resynthesis, glycogen synthase activity and glycemic and insulinemic response in a double-blind, crossover, randomized clinical trial. Fourteen endurance-trained men performed an exhaustive cycle ergometer exercise to deplete muscle glycogen. The following morning, participants completed a second cycling protocol followed by a 4-h recovery, during which they received either test beverage (coffee + milk) or control (milk) and a breakfast meal, with a simple randomization. Blood samples and muscle biopsies were collected at the beginning and by the end of recovery. Eleven participants were included in data analysis (age: 39.0 ± 6.0 years; BMI: 24.0 ± 2.3 kg/m2; VO2max: 59.9 ± 8.3 mL·kg−1·min−1; PPO: 346 ± 39 W). The consumption of coffee + milk resulted in greater muscle glycogen recovery (102.56 ± 18.75 vs. 40.54 ± 18.74 mmol·kg dw−1; p = 0.01; d = 0.94) and greater glucose (p = 0.02; d = 0.83) and insulin (p = 0.03; d = 0.76) total area under the curve compared with control. The addition of coffee to a beverage with adequate amounts of carbohydrates increased muscle glycogen resynthesis and the glycemic and insulinemic response during the 4-h recovery after exhaustive cycling exercise.


Author(s):  
Emi Kondo ◽  
Keisuke Shiose ◽  
Takuya Osawa ◽  
Keiko Motonaga ◽  
Akiko Kamei ◽  
...  

Abstract Background Severe rapid weight loss (RWL) induces a decrease in muscle glycogen (mGly). Nevertheless, adequate carbohydrate intake after RWL has not been reported to optimize muscle glycogen following a weigh-in the evening until a wrestling tournament morning. The purpose of this study was to investigate the effect of an overnight high-carbohydrate recovery meal of 7.1 g kg−1 following RWL on mGly concentration. Methods Ten male elite wrestlers lost 6% of their body mass within 53 h and then subsequently ate three meals, within 5 h, containing total of 7.1 g kg−1 of carbohydrates. mGly was measured by 13C-magnetic resonance spectroscopy before (BL) and after RWL (R0) at 2 h (R2), 4 h (R4), and 13 h (R13) after initiating the meal. Body composition, muscle cross-sectional area, and blood and urine samples were collected at BL, R0, and R13. Results Body mass decreased by 4.6 ± 0.6 kg (p < 0.05) and did not recover to BL levels in R13 (− 1.7 ± 0.6 kg, p < 0.05). Likewise, mGly by 36.5% ± 10.0% (p < 0.05) and then did not reach BL levels by R13 (p < 0.05). Conclusion A high-carbohydrate meal of 7.1 g kg−1 after 6% RWL was not sufficient to recover mGly during a 13 h recovery phase. Participating in high-intensity wrestling matches with an mGly concentration below normal levels is maybe undesirable.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2371
Author(s):  
Julia L. Bone ◽  
Megan L. Ross ◽  
Kristyen A. Tomcik ◽  
Nikki A. Jeacocke ◽  
Alannah K. A. McKay ◽  
...  

Researchers and practitioners in sports nutrition would greatly benefit from a rapid, portable, and non-invasive technique to measure muscle glycogen, both in the laboratory and field. This explains the interest in MuscleSound®, the first commercial system to use high-frequency ultrasound technology and image analysis from patented cloud-based software to estimate muscle glycogen content from the echogenicity of the ultrasound image. This technique is based largely on muscle water content, which is presumed to act as a proxy for glycogen. Despite the promise of early validation studies, newer studies from independent groups reported discrepant results, with MuscleSound® scores failing to correlate with the glycogen content of biopsy-derived mixed muscle samples or to show the expected changes in muscle glycogen associated with various diet and exercise strategies. The explanation of issues related to the site of assessment do not account for these discrepancies, and there are substantial problems with the premise that the ratio of glycogen to water in the muscle is constant. Although further studies investigating this technique are warranted, current evidence that MuscleSound® technology can provide valid and actionable information around muscle glycogen stores is at best equivocal.


Author(s):  
Lee M. Margolis ◽  
Marques A. Wilson ◽  
Claire C. Whitney ◽  
Christopher T. Carrigan ◽  
Nancy E. Murphy ◽  
...  

Abstract Background The effects of low muscle glycogen on molecular markers of protein synthesis and myogenesis before and during aerobic exercise with carbohydrate ingestion is unclear. The purpose of this study was to determine the effects of initiating aerobic exercise with low muscle glycogen on mTORC1 signaling and markers of myogenesis. Methods Eleven men completed two cycle ergometry glycogen depletion trials separated by 7-d, followed by randomized isocaloric refeeding for 24-h to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) glycogen. Participants then performed 80-min of cycle ergometry (64 ± 3% VO2peak) while ingesting 146 g carbohydrate. mTORC1 signaling (Western blotting) and gene transcription (RT-qPCR) were determined from vastus lateralis biopsies before glycogen depletion (baseline, BASE), and before (PRE) and after (POST) exercise. Results Regardless of treatment, p-mTORC1Ser2448, p-p70S6KSer424/421, and p-rpS6Ser235/236 were higher (P < 0.05) POST compared to PRE and BASE. PAX7 and MYOGENIN were lower (P < 0.05) in LOW compared to AD, regardless of time, while MYOD was lower (P < 0.05) in LOW compared to AD at PRE, but not different at POST. Conclusion Initiating aerobic exercise with low muscle glycogen does not affect mTORC1 signaling, yet reductions in gene expression of myogenic regulatory factors suggest that muscle recovery from exercise may be reduced.


Author(s):  
Nobukazu Kasai ◽  
Fumiya Tanji ◽  
Aya Ishibashi ◽  
Hayato Ohnuma ◽  
Hideyuki Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document