Privileged Scaffolds in Medicinal Chemistry

2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4995
Author(s):  
Mohamed Ramadan ◽  
Ashraf A. Aly ◽  
Lamiaa E. Abd El-Haleem ◽  
Mohammed B. Alshammari ◽  
Stefan Bräse

Pyrazoles are considered privileged scaffolds in medicinal chemistry. Previous reviews have discussed the importance of pyrazoles and their biological activities; however, few have dealt with the chemistry and the biology of heteroannulated derivatives. Therefore, we focused our attention on recent topics, up until 2020, for the synthesis of pyrazoles, their heteroannulated derivatives, and their applications as biologically active moieties. Moreover, we focused on traditional procedures used in the synthesis of pyrazoles.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 716 ◽  
Author(s):  
Dorina Amariucai-Mantu ◽  
Violeta Mangalagiu ◽  
Ramona Danac ◽  
Ionel I. Mangalagiu

Microwave (MW) assisted reactions have became a powerful tool in azaheterocycles chemistry during the last decades. Five and six membered ring azaheterocycles are privileged scaffolds in modern medicinal chemistry possessing a large variety of biological activity. This review is focused on the recent relevant advances in the MW assisted reactions applied to azaheterocyclic derivatives and their medicinal chemistry applications from the last five years. The review is divided according to the main series of azaheterocycles, more precisely 5- and 6-membered ring azaheterocycles (with one, two, and more heteroatoms) and their fused analogues. In each case, the reaction pathways, the advantages of using MW, and considerations concerning biological activity of the obtained products were briefly presented.


Author(s):  
Priya Anand ◽  
Shalini John ◽  
Irene Meliciani ◽  
Alexander Schug ◽  
Wolfgang Wenzel

Sign in / Sign up

Export Citation Format

Share Document