Linear correlations between the redox potential and other chemical and physico-chemical parameters

2007 ◽  
pp. 579-602
2012 ◽  
Vol 2 (10) ◽  
pp. 1-3
Author(s):  
Gyaneswar Bhuyan ◽  
◽  
Dr. R. Anandhan Dr. R. Anandhan ◽  
V. kavitha V. kavitha

2007 ◽  
Vol 9 (3) ◽  
pp. 236-246
Author(s):  
P. D. Magesh ◽  
J. Santanakumar ◽  
P. Venkateshwaran ◽  
A. K. Abdul Nazar ◽  
R. Venkatesan ◽  
...  

2018 ◽  
Vol 8 (5) ◽  
pp. 48-50
Author(s):  
N.V. Lakina ◽  
◽  
A.I. Golovko ◽  
V.Yu. Doluda ◽  
V.G. Matveeva ◽  
...  

2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


2020 ◽  
pp. 6-11
Author(s):  
Anton Kasatkin ◽  
Anna Nigmatullina ◽  
Mikhail Kopytov

The article presents the results of studies of osmolality and pH of 0,9 % sodium chloride of various manufacturers. To obtain data on the pH value, the data used in the passports are used, and the indicators of its osmolality are de- termined using laboratory tests. 0,9 % sodium chloride from different manufacturers has different pH and osmolality. Knowing the actual values of physico-chemical parameters can increase the accuracy of the results of future clinical studies, which compare the pharmacokinetics and pharmacodynamics of modern plasma-substituting solutions and a solution of 0,9 % sodium chloride.


Sign in / Sign up

Export Citation Format

Share Document