Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives

Author(s):  
Riccardo Amorati ◽  
Gian Franco Pedulli ◽  
Luca Valgimigli ◽  
Orazio A. Attanasi ◽  
Paolino Filippone ◽  
...  

1985 ◽  
Vol 63 (10) ◽  
pp. 2633-2638 ◽  
Author(s):  
Lawrence Ross Coates Barclay ◽  
Steven Jeffrey Locke ◽  
Joseph Mark MacNeil ◽  
Joann Vankessel

The kinetics of autoxidation of linoleic acid in dimyristoylphosphatidylcholine (DMPC) bilayers were studied at 30 °C and pH 7 under 760 Torr O2. Reactions were initiated using either the lipid-soluble di-tert-butylhyponitrite (DBHN) or water-soluble azobis(2-amidinopropane)•HCl (ABAP). Rates of chain initiation, Ri, were measured with a lipid-soluble antioxidant, a-tocopherol, or a water-soluble one, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). The slightly higher oxidizability obtained [Formula: see text] compared to methyl linoleate in chlorobenzene [Formula: see text] is attributed to a moderate polar solvent effect on ionized linoleate near the bilayer surface. A low initiator efficiency, e = 0.0895 for DBHN in DMPC, is attributed to the cage effect in the bilayer of high microviscosity. Similar autoxidation experiments on methyl linoleate in DMPC bilayers gave a lower oxidizability [Formula: see text], indicating that the ester is sequestered deeper in the hydrophobic region of DMPC than is ionized linoleate. Some absolute rate constants are determined using the rotating sector technique for linoleic acid in 0.50 M SDS micelles, and egg lecithin and dilinoleoylphosphatidylcholine (DLPC) bilayers. A hundredfold decrease in the termination rate constant, 2kt for DLPC bilayer compared to homogeneous solution is attributed to chain termination in a bilayer region of high polarity. A concomitant reduction (up to tenfold) in the propagation rate constant, kp, is attributed to diffusion of polar peroxyl radicals away from the oxidizable region of the bilayer.



1978 ◽  
Vol 9 (20) ◽  
Author(s):  
V. MADHAVAN ◽  
R. H. SCHULER ◽  
R. W. FESSENDEN


1965 ◽  
Vol 61 (0) ◽  
pp. 1417-1424 ◽  
Author(s):  
G. E. Adams ◽  
J. W. Boag ◽  
B. D. Michael


1972 ◽  
Vol 57 (12) ◽  
pp. 5403-5408 ◽  
Author(s):  
F. Stuhl ◽  
H. Niki
Keyword(s):  


1971 ◽  
Vol 49 (12) ◽  
pp. 2178-2182 ◽  
Author(s):  
J. A. Howard ◽  
S. Korcek

Absolute rate constants for the liquid phase autoxidation of some organic sulfides at 30 °C have been measured. The reactivities of organic sulfides towards t-butylperoxy radicals are equal to or somewhat less than the reactivities of structurally analogous ethers. The α-alkylthiylalkylperoxy radicals appear to be about 3–5 times more reactive in hydrogen atom abstraction than the α-alkoxyalkylperoxy radicals.



1986 ◽  
Vol 64 (11) ◽  
pp. 2192-2195 ◽  
Author(s):  
William E. Jones ◽  
Joseph L. Ma

The absolute rate constants for the reaction of H atoms with methyl- and vinyl-halides have been determined using esr spectroscopy and a conventional gas flow system. The rate constants determined at 298 ± 2 K at a pressure of 0.55 Torr are methane, (1.7 ± 0.3) × 10−17; ethane, (2.3 ± 0.5) × 10−17; methylfluoride, (4 ± 3) × 10−15; methylchloride, (8 ± 2) × 10−16; methylbromide, (2.1 ± 0.6) × 10−14; vinylfluoride, (1.47 ± 0.02) × 10−13; vinylchloride, (1.66 ± 0.08) × 10−13; and vinylbromide (4.07 ± 0.73) × 10−13 in units of cm3 molecule−1 s−1.



Sign in / Sign up

Export Citation Format

Share Document