Controlled hydrothermal synthesis of copper(ii or i,ii) coordination polymers via pH-dependent in situ metal/ligand redox reactions

2004 ◽  
Vol 28 (12) ◽  
pp. 1412 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Ming-Liang Tong ◽  
Xiao-Ming Chen
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1667
Author(s):  
Mikhail Karushev

Fast and reversible cobalt-centered redox reactions in metallopolymers are the key to using these materials in energy storage, electrocatalytic, and sensing applications. Metal-centered electrochemical activity can be enhanced via redox matching of the conjugated organic backbone and cobalt centers. In this study, we present a novel approach to redox matching via modification of the cobalt coordination site: a conductive electrochemically active polymer was electro-synthesized from [Co(Amben)] complex (Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) for the first time. The poly-[Co(Amben)] films were investigated by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), in situ UV‑vis-NIR spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of 1.25 electrons per repeat unit. The findings indicate consecutive formation of three redox states during reversible electrochemical oxidation of the polymer film, which were identified as benzidine radical cations, Co(III) ions, and benzidine di-cations. The Co(II)/Co(III) redox switching is retained in the thick polymer films because it occurs at potentials of high polymer conductivity due to the optimum redox matching of the Co(II)/Co(III) redox pair with the organic conjugated backbone. It makes poly-[Co(Amben)] suitable for various practical applications based on cobalt-mediated redox reactions.


Sign in / Sign up

Export Citation Format

Share Document