Label-free aptamer-based sensors for l-argininamide by using nucleic acid minor groove binding dyes

2011 ◽  
Vol 47 (11) ◽  
pp. 3192 ◽  
Author(s):  
Zece Zhu ◽  
Chuluo Yang ◽  
Xiang Zhou ◽  
Jingui Qin
1993 ◽  
Vol 268 (6) ◽  
pp. 3944-3951
Author(s):  
E. Trotta ◽  
E. D'Ambrosio ◽  
N. Del Grosso ◽  
G. Ravagnan ◽  
M. Cirilli ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 685
Author(s):  
Sandra Amanda Kozieł ◽  
Monika Katarzyna Lesiów ◽  
Daria Wojtala ◽  
Edyta Dyguda-Kazimierowicz ◽  
Dariusz Bieńko ◽  
...  

A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.


Biochemistry ◽  
1996 ◽  
Vol 35 (4) ◽  
pp. 1106-1114 ◽  
Author(s):  
Nadarajah Vigneswaran ◽  
Charles A. Mayfield ◽  
Brad Rodu ◽  
Roger James ◽  
H.-G. Kim ◽  
...  

2019 ◽  
Author(s):  
Mateo I. Sánchez ◽  
Gustavo Rama ◽  
Renata Calo ◽  
Kübra Ucar ◽  
Per Lincoln ◽  
...  

We report the first Ru(II) coordination compounds that interact with DNA through a canonical minor groove insertion mode and with selectivity for A/T rich sites. This was made possible by integrating a bis‑benzamidine minor groove DNA-binding agent with a ruthenium(II) complex. Importantly, one of the enantiomers (Δ‑[Ru(bpy)<sub>2</sub><b>b4bpy</b>]<sup>2+</sup>, <b>Δ‑4Ru</b>) shows a considerably higher DNA affinity than the parent organic ligand and than the other enantiomer, particularly for the AATT sequence, while the other enantiomer preferentially targets long AAATTT sites with overall lower affinity. Finally, we demonstrate that the photophysical properties of these new binders can be exploited for DNA cleavage using visible light.


Sign in / Sign up

Export Citation Format

Share Document