High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries

2014 ◽  
Vol 7 (5) ◽  
pp. 1643-1647 ◽  
Author(s):  
Ya You ◽  
Xing-Long Wu ◽  
Ya-Xia Yin ◽  
Yu-Guo Guo

High-quality Prussian blue crystals with a small number of vacancies and a low water content show high specific capacity and remarkable cycle stability as cathode materials for Na-ion batteries.

2017 ◽  
Vol 53 (40) ◽  
pp. 5569-5572 ◽  
Author(s):  
Yang Liu ◽  
Dandan He ◽  
Ruimin Han ◽  
Gangya Wei ◽  
Yun Qiao

Nanostructured KxNayMnFe(CN)6 (x + y ≤ 2) has been synthesized via a facile co-precipitation method.


2019 ◽  
Vol 2 (12) ◽  
pp. 8570-8579 ◽  
Author(s):  
Yuncai Chen ◽  
Haw Jiunn Woo ◽  
Muhammad Rizwan ◽  
Rosiyah binti Yahya ◽  
Dehu Cui ◽  
...  

2020 ◽  
Vol 12 (39) ◽  
pp. 43624-43633
Author(s):  
Qian Liu ◽  
Shao-Jian Zhang ◽  
Cheng-Cheng Xiang ◽  
Chen-Xu Luo ◽  
Peng-Fang Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chenchen Wang ◽  
Luojia Liu ◽  
Shuo Zhao ◽  
Yanchen Liu ◽  
Yubo Yang ◽  
...  

AbstractLayered transition-metal oxides have attracted intensive interest for cathode materials of sodium-ion batteries. However, they are hindered by the limited capacity and inferior phase transition due to the gliding of transition-metal layers upon Na+ extraction and insertion in the cathode materials. Here, we report that the large-sized K+ is riveted in the prismatic Na+ sites of P2-Na0.612K0.056MnO2 to enable more thermodynamically favorable Na+ vacancies. The Mn-O bonds are reinforced to reduce phase transition during charge and discharge. 0.901 Na+ per formula are reversibly extracted and inserted, in which only the two-phase transition of P2 ↔ P’2 occurs at low voltages. It exhibits the highest specific capacity of 240.5 mAh g−1 and energy density of 654 Wh kg−1 based on the redox of Mn3+/Mn4+, and a capacity retention of 98.2% after 100 cycles. This investigation will shed lights on the tuneable chemical environments of transition-metal oxides for advanced cathode materials and promote the development of sodium-ion batteries.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Min Wan ◽  
Rui Zeng ◽  
Jingtao Meng ◽  
Zexiao Cheng ◽  
Weilun Chen ◽  
...  

AbstractIron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries. However, FeHCF always suffers from a poor cycling stability, which is closely related to the abundant vacancy defects in its framework. Herein, post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of high-quality FeHCF in a highly concentrated Na4Fe(CN)6 solution. Both the post-synthetic and in-situ vacancy repaired FeHCF products (FeHCF-P and FeHCF-I) show the significant decrease in the number of vacancy defects and the reinforced structure, which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF. In particular, FeHCF-P delivers a reversible discharge capacity of 131 mAh g−1 at 1 C and remains 109 mAh g−1 after 500 cycles, with a capacity retention of 83%. FeHCF-I can deliver a high discharge capacity of 158.5 mAh g−1 at 1 C. Even at 10 C, the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g−1 and retains 75% after 800 cycles. This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.


RSC Advances ◽  
2019 ◽  
Vol 9 (27) ◽  
pp. 15210-15216 ◽  
Author(s):  
Mingxiang Deng ◽  
Sijie Li ◽  
Wanwan Hong ◽  
Yunling Jiang ◽  
Wei Xu ◽  
...  

Antimony sulfide (Sb2S3) has drawn widespread attention as an ideal candidate anode material for sodium-ion batteries (SIBs) due to its high specific capacity of 946 mA h g−1 in conversion and alloy reactions.


2018 ◽  
Vol 8 (11) ◽  
pp. 1870048 ◽  
Author(s):  
Jian Peng ◽  
Jinsong Wang ◽  
Haocong Yi ◽  
WenJing Hu ◽  
Yonghui Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document