Interaction of pyrazinamide drug functionalized carbon and boron nitride nanotubes with pncA protein: a molecular dynamics and density functional approach

RSC Advances ◽  
2013 ◽  
Vol 3 (35) ◽  
pp. 15102 ◽  
Author(s):  
Nabanita Saikia ◽  
Anupam N. Jha ◽  
Ramesh C. Deka
2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2021 ◽  
Vol 21 (11) ◽  
pp. 5499-5509
Author(s):  
Rosely Maria dos Santos Cavaleiro ◽  
Tiago da Silva Arouche ◽  
Phelipe Seiichi Martins Tanoue ◽  
Tais Souza Sá Pereira ◽  
Raul Nunes de Carvalho Junior ◽  
...  

Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.


2019 ◽  
Vol 16 (1) ◽  
pp. 299-325
Author(s):  
Atef Elmahdy ◽  
Hayam Taha ◽  
Mohamed Kamel ◽  
Menna Tarek

The influence of mechanical bending to tuning the hydrogen storage of Ni-functionalized of zigzag type of boron nitride nanotubes (BNNTs) has been investigated using density functional theory (DFT) with reference to the ultimate targets of the US Department of Energy (DOE). Single Ni atoms prefer to bind strongly at the axial bridge site of BN nanotube, and each Ni atom bound on BNNT may adsorb up to five, H2 molecules, with average adsorption energies per hydrogen molecule of )-1.622,-0.527 eV( for the undeformed B40N40-? = 0 , ) -1.62 , 0-0.308 eV( for the deformed B40N40-? = 15, ) -1.589,  -0.310 eV( for the deformed B40N40-? = 30, and ) -1.368-  -0.323 eV( for the deformed B40N40-? = 45 nanotubes respectively. with the H-H bonds between H2 molecules significantly elongated. The curvature attributed to the bending angle has effect on average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.691 wt % for 5H2 Ni B40N40-? = 0, 15, 30, 45. While the desorption activation barriers of the complexes nH2 + Ni B40N40-? = 0 (n = 1-4) are outside the (DOE) domain (-0.2 to -0.6 eV), the complexes nH2 + Ni- B40N40-? = 0 (n = 5) is inside this domain. For nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 1-2) are outside the (DOE) domain, the complexes nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 3-5) are inside this domain. The hydrogen storage of the irreversible 4H2+ Ni- B40N40-? = 0, 2H2+ Ni- B40N40-? = 15, 30, 45 and reversible 5H2+ Ni- B40N40-? = 0, 3H2+ Ni- B40N40-? = 15, 30, 45 interactions are characterized in terms of density of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials. Our calculations expect that 5H2- Ni- B40N40-j = 0, 15, 30, 45 complexes are promising hydrogen storage candidates.


2019 ◽  
Vol 54 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Sumit Sharma ◽  
Prince Setia ◽  
Rakesh Chandra ◽  
Nitin Thakur

Heat dissipation is very essential for the efficient working of electronic devices. There is a widespread demand for high thermal conductivity materials. Boron nitride nanotubes have high thermal conductivity but due to their poor interfacial adhesion with polymers, their use as heat dissipating material is restricted. In this study, a silane-coupling agent has been used to modify the boron nitride nanotubes. These tubes were then inserted in polymethyl methacrylate matrix. Various properties such as thermal conductivity, storage modulus, and loss factor have been predicted. Molecular dynamics simulations have also been used for accurate prediction of the properties of boron nitride nanotubes/polymethyl methacrylate composites. The boron nitride nanotubes weight percentage was varied from 0% to 70% for studying the effect on thermal conductivity, storage modulus, and loss factor. The experimentally obtained thermal conductivity increased rapidly from 0.6 W/mK at 40 wt.% of boron nitride nanotubes to about 3.8 W/mK at 80 wt.% of boron nitride nanotubes in polymethyl methacrylate matrix (an increase of nearly 533%). A similar trend was obtained using molecular dynamics simulations. The storage modulus increased from 2 GPa (for pure polymethyl methacrylate) to about 5 GPa (for 70 wt.% boron nitride nanotubes). The glass transition temperature of boron nitride nanotubes/polymethyl methacrylate composites shifted to higher temperatures with an increase in boron nitride nanotubes weight percentage.


2001 ◽  
Vol 138 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Shuji Ogata ◽  
Elefterios Lidorikis ◽  
Fuyuki Shimojo ◽  
Aiichiro Nakano ◽  
Priya Vashishta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document