Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response

2013 ◽  
Vol 1 (22) ◽  
pp. 3593 ◽  
Author(s):  
Heng-Wen Ting ◽  
Yu-Kai Lin ◽  
Yi-Jen Wu ◽  
Li-Jen Chou ◽  
Cho-Jen Tsai ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Min Bae ◽  
Kyeong-Hee Lee ◽  
Jeongwon Yang ◽  
Duchang Heo

Localized surface plasmon resonance (LSPR) is a promising method for detecting antigen-antibody binding in label-free biosensors. In this study, the fabrication of a LSPR substrate with a gold nanodot array through the lift-off process of an alumina mask is reported. The substrate showed an extinction peak in its extinction spectrum, and the peak position was dependent on the height of the gold nanodot array, and the change of extinction peak with the height could be predicted by the numerical simulation. In addition, the peak position was observed to be red-shifted with the increasing RIU value of the medium surrounding the gold nanodot array. In particular, the peak position in the 10 nm thick gold nanodot array was approximately 710 nm in air, and the sensitivity, defined as the ratio of the shift of peak position to the RIU of the medium, was 323.6 nm/RIU. The fabrication procedure could be applied to fabricate the LSPR substrates with a large area.


2021 ◽  
pp. 2100653
Author(s):  
Gyeong‐Su Park ◽  
Kyung Suk Min ◽  
Hyuksang Kwon ◽  
Sangwoon Yoon ◽  
Sangwon Park ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Fahim Yasir ◽  
Md. Rakib Hossain Antor ◽  
Mahmudul Hassan Turja ◽  
Ashikur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


Sign in / Sign up

Export Citation Format

Share Document