Band gap modulation of functionalized metal–organic frameworks

2014 ◽  
Vol 16 (43) ◽  
pp. 23646-23653 ◽  
Author(s):  
Terence Musho ◽  
Jiangtan Li ◽  
Nianqiang Wu

Metal–organic frameworks (MOFs) have been envisioned as alternatives to planar metallic catalysts for solar-to-fuel conversion.

2019 ◽  
Author(s):  
Marco Taddei ◽  
Giulia M. Schukraft ◽  
Michael E. A. Warwick ◽  
Davide Tiana ◽  
Matthew McPherson ◽  
...  

We report a defect-engineering approach to modulate the band gap of zirconium-based metal-organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1-3.3 eV range. Ab-initio calculations suggest that shrinking of the band gap is mainly due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO<sub>2</sub> reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.


2019 ◽  
Author(s):  
Marco Taddei ◽  
Giulia M. Schukraft ◽  
Michael E. A. Warwick ◽  
Davide Tiana ◽  
Matthew McPherson ◽  
...  

We report a defect-engineering approach to modulate the band gap of zirconium-based metal-organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1-3.3 eV range. Ab-initio calculations suggest that shrinking of the band gap is mainly due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO<sub>2</sub> reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.


2019 ◽  
Vol 7 (41) ◽  
pp. 23781-23786 ◽  
Author(s):  
Marco Taddei ◽  
Giulia M. Schukraft ◽  
Michael E. A. Warwick ◽  
Davide Tiana ◽  
Matthew J. McPherson ◽  
...  

A simple defect engineering approach to systematically tune the band gap of the prototypical zirconium-based metal–organic framework UiO-66 is reported. Defect engineered materials display enhanced photocatalytic activity.


2019 ◽  
Author(s):  
Marco Taddei ◽  
Giulia M. Schukraft ◽  
Michael E. A. Warwick ◽  
Davide Tiana ◽  
Matthew McPherson ◽  
...  

We report a defect-engineering approach to modulate the band gap of zirconium-based metal-organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1-3.3 eV range. Ab-initio calculations suggest that shrinking of the band gap is mainly due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO<sub>2</sub> reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.


2020 ◽  
Author(s):  
Konrad Siemensmeyer ◽  
Craig A. Peeples ◽  
Patrik Tholen ◽  
Bünyemin Çoşut ◽  
Gabriel Hanna ◽  
...  

<p>Herein is reported the first semiconducting and magnetic phosphonate metal-organic framework (MOF), TUB75, which contains a one-dimensional inorganic building unit composed of a zig-zag chain of corner-sharing copper dimers. The solid-state UV-Vis spectrum of TUB75 reveals the existence of a narrow band gap of 1.4 eV, which agrees well with the 1.77 eV one obtained from DFT calculations. Magnetization measurements show that TUB75 is composed of antiferromagnetically coupled copper dimer chains. Due to their rich structural chemistry and exceptionally high thermal/chemical stabilities, phosphonate MOFs like TUB75 may open new vistas in engineerable electrodes for supercapacitors. </p>


2015 ◽  
Vol 44 (30) ◽  
pp. 13464-13468 ◽  
Author(s):  
Raja Ghosh ◽  
Anthony F. Pedicini ◽  
Purna Chandra Rao ◽  
K. S. Asha ◽  
Arthur C. Reber ◽  
...  

We have synthesized three Metal–Organic Frameworks (MOFs) in which Zn metal ions form the secondary building unit, and 4,4′-sulfonyldibenzoic acid (SDB) serves as the ligand: [[Zn(DMF)(SDB)] (DMF), 1, [Zn3(DMF)3(SDB)3](DMF), 2 and [Zn3(OH)2(SDB)2] (DMF)2, 3, where DMF = dimethyl formamide].


2017 ◽  
Vol 5 (23) ◽  
pp. 11894-11904 ◽  
Author(s):  
Alex Aziz ◽  
A. Rabdel Ruiz-Salvador ◽  
Norge C. Hernández ◽  
Sofia Calero ◽  
Said Hamad ◽  
...  

Computer simulations show that iron substitution at the octahedral centres of porphyrin-based metal–organic frameworks leads to optimal band structures for photocatalysis.


2017 ◽  
Vol 5 (3) ◽  
pp. 539-548 ◽  
Author(s):  
K. S. Asha ◽  
Arthur C. Reber ◽  
N. Ahmed ◽  
R. Nath ◽  
Shiv N. Khanna ◽  
...  

The optical band gap energy and magnetism of a series of Mn based compounds were tuned through linker modification.


2016 ◽  
Vol 18 (18) ◽  
pp. 12748-12754 ◽  
Author(s):  
Alhassan Salman Yasin ◽  
Jiangtian Li ◽  
Nianqiang Wu ◽  
Terence Musho

A study of the band gap modulation in response to the inorganic substitution of the UiO-66 functionalized MOF.


Sign in / Sign up

Export Citation Format

Share Document