High-throughput computational screening of metal–organic frameworks

2014 ◽  
Vol 43 (16) ◽  
pp. 5735-5749 ◽  
Author(s):  
Yamil J. Colón ◽  
Randall Q. Snurr

High-throughput computational screening of MOFs allows identification of promising candidates, new structure–property relationships, and performance limits.

2019 ◽  
Vol 7 (13) ◽  
pp. 7470-7479 ◽  
Author(s):  
Wei Li ◽  
Xiaoxiao Xia ◽  
Meng Cao ◽  
Song Li

Adsorption-driven heat pumps (AHPs) based on metal–organic frameworks (MOFs) have been garnering rapidly growing research interests due to their outstanding adsorption performance.


RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14260-14267 ◽  
Author(s):  
Gemechis D. Degaga ◽  
Ravindra Pandey ◽  
Chansi Gupta ◽  
Lalit Bharadwaj

The structure–property relationships of pristine and functionalized Zn-BTC (Zn3(BTC)2) metal–organic frameworks are investigated.


CrystEngComm ◽  
2014 ◽  
Vol 16 (20) ◽  
pp. 4069-4083 ◽  
Author(s):  
Muwei Zhang ◽  
Mathieu Bosch ◽  
Thomas Gentle III ◽  
Hong-Cai Zhou

This highlight review will outline the recent advances on rational design of MOFs from both our and other groups based on their structure–property relationships, and provide a systematic overview of different methods for rational design of MOFs with desired porosities and functionalities.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


CrystEngComm ◽  
2018 ◽  
Vol 20 (39) ◽  
pp. 5913-5918 ◽  
Author(s):  
Timur Islamoglu ◽  
Ken-ichi Otake ◽  
Peng Li ◽  
Cassandra T. Buru ◽  
Aaron W. Peters ◽  
...  

Synthesis and activation of phase-pure and defect-free metal–organic frameworks (MOFs) are essential for establishing accurate structure–property relationships.


Sign in / Sign up

Export Citation Format

Share Document