adsorption performance
Recently Published Documents





2022 ◽  
Vol 204 ◽  
pp. 111961
Sara Ranjbari ◽  
Ali Ayati ◽  
Bahareh Tanhaei ◽  
Amani Al-Othman ◽  
Fatemeh Karimi

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122813
Tianyu Liu ◽  
Ye Jiang ◽  
Zhengda Yang ◽  
Riyi Lin ◽  
Xinwei Wang ◽  

2022 ◽  
Qiushi Li ◽  
Ganmao Su ◽  
Ronggang Luo ◽  
Guanben Du ◽  
Linkun Xie ◽  

Abstract The rapid global industrialization worsens the contamination of heavy metals in aquatic ecosystems on the earth. In this study, the green, ultrafine cellulose-based porous nanofibrous membranes for efficient heavy metal removal through incorporation of chitosan by the conventional and core-shell electrospinning ways were firstly obtained. The relations among parameters of electrospun solution, micro-morphology and porosity for nanofibers, the variation of chemical active sites and adsorption performance of biocomposite nanofibrous membranes for conventional and core-shell electrospinning as well as the adsorption effect factors of copper ions including initial concentration, pH of solution and interaction time were comprehensively investigated. The results show that the average diameter for conventional and core-shell ultrafine nanofibers at 50% chitosan and 30% chitosan loading can achieve 56.22 nm and 37.28 nm, respectively. The core-shell cellulose acetate/chitosan (CA/CS) biocomposite nanofibrous membranes induced the surface aggregation of copper ions to impede the further adsorption. The more uniform distribution for chemical adsorption sites can be obtained by the conventional single-nozzle electrospinning than by the core-shell one, which promotes the adsorption performance of copper ions and decreases the surface shrinkage of nanofibrous membranes during adsorption. The 30% CS conventional nanofibrous membranes at the pH=5 aqueous solution showed the optimum adsorption capacity of copper ions (86.4 mg/g). The smart combination of renewable biomass with effective chemical adsorptive sites, the electrospinning technology with interwoven porous structure and the adsorption method with low cost and facile operation shows a promising prospect for water treatment.

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 30
Guochao Qian ◽  
Jin Hu ◽  
Shan Wang ◽  
Weiju Dai ◽  
Qu Zhou

Dissolved gas analysis (DGA) is recognized as one of the most reliable methods in transformer fault diagnosis technology. In this paper, three characteristic gases of transformer oil (CO, C2H4, and CH4) were used in conjunction with a Cr-decorated InN monolayer according to first principle calculations. The adsorption performance of Cr–InN for these three gases were studied from several perspectives such as adsorption structures, adsorption energy, electron density, density of state, and band gap structure. The results revealed that the Cr–InN monolayer had good adsorption performance with CO and C2H4, while the band gap of the monolayer slightly changed after the adsorption of CO and C2H4. Additionally, the adsorption property of the Cr–InN monolayer on CH4 was acceptable and a significant response was simultaneously generated. This paper provides the first insights regarding the possibility of Cr-doped InN monolayers for the detection of gases dissolved in oil.

Sign in / Sign up

Export Citation Format

Share Document