Structure–property relationship of metal–organic frameworks for alcohol-based adsorption-driven heat pumps via high-throughput computational screening

2019 ◽  
Vol 7 (13) ◽  
pp. 7470-7479 ◽  
Author(s):  
Wei Li ◽  
Xiaoxiao Xia ◽  
Meng Cao ◽  
Song Li

Adsorption-driven heat pumps (AHPs) based on metal–organic frameworks (MOFs) have been garnering rapidly growing research interests due to their outstanding adsorption performance.

2019 ◽  
Vol 7 (43) ◽  
pp. 25010-25019 ◽  
Author(s):  
Wei Li ◽  
Xiaoxiao Xia ◽  
Song Li

High-throughput computational screening of millions of cascaded adsorption heat pumps based on metal–organic frameworks and covalent–organic frameworks.


2014 ◽  
Vol 43 (16) ◽  
pp. 5735-5749 ◽  
Author(s):  
Yamil J. Colón ◽  
Randall Q. Snurr

High-throughput computational screening of MOFs allows identification of promising candidates, new structure–property relationships, and performance limits.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34621-34631
Author(s):  
Min Xu ◽  
Zhangli Liu ◽  
Xiulan Huai ◽  
Lanting Lou ◽  
Jiangfeng Guo

Quantitative structure–property relationship models that correlate the water adsorption performance of MOFs to their physicochemical features have been established.


2019 ◽  
Vol 58 (48) ◽  
pp. 17412-17417 ◽  
Author(s):  
Mingxin Zhang ◽  
Yuyan Lai ◽  
Mu Li ◽  
Tao Hong ◽  
Weiyu Wang ◽  
...  

2006 ◽  
Vol 927 ◽  
Author(s):  
Daejin Kim ◽  
Tae Bum Lee ◽  
Seung-Hoon Choi ◽  
Sang Beom Choi ◽  
Jihye Yoon ◽  
...  

ABSTRACTWe reported the relationship between the structure of metal-organic frameworks (MOFs) and the capability of hydrogen uptake. The QSPR (quantitative structure-property relationship) method was used to find out the factor which affects the adsorption amount of hydrogen molecule on the MOFs. The derivatives which were substituted by functionalized aromatic rings showed the effect of polarization within the identical topology of the frame and similar lattice constants. And the typical series of MOFs with different topology of the frames were investigated to examine the influence of topological change. For the consideration of saturation of hydrogen adsorption amounts, the result of fitting the adsorption curve with Langmuir-Freundlich equation was used to the QSPR approach additionally. We found out that the polar surface area plays a key role on the adsorption amount of hydrogen molecule into the MOFs and the specific value of electrostatic potential surface was calculated to indicate the interaction between hydrogen molecule and MOF.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


Sign in / Sign up

Export Citation Format

Share Document