Spin transport properties in lower n-acene–graphene nanojunctions

2015 ◽  
Vol 17 (17) ◽  
pp. 11292-11300 ◽  
Author(s):  
Dongqing Zou ◽  
Bin Cui ◽  
Xiangru Kong ◽  
Wenkai Zhao ◽  
Jingfen Zhao ◽  
...  

A series of n-acene–graphene (n = 3, 4, 5, 6) devices, in which n-acene molecules are sandwiched between two zigzag graphene nanoribbon (ZGNR) electrodes, are modeled through the spin polarized density functional theory combined with the non-equilibrium Green's function technique.

RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 15008-15015 ◽  
Author(s):  
Dan Zhang ◽  
Mengqiu Long ◽  
Xiaojiao Zhang ◽  
Jun Ouyang ◽  
Hui Xu ◽  
...  

Using the non-equilibrium Green's function method and spin-polarized density functional theory, we investigate the stability and spin-resolved transport properties of zigzag α-graphyne nanoribbons with symmetric and asymmetric edge fluorinations.


Author(s):  
Yaoxing Sun ◽  
Bei Zhang ◽  
shidong zhang ◽  
Dan Zhang ◽  
Jiwei Dong ◽  
...  

Based on MoC2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC2-PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and non-equilibrium Green's...


2014 ◽  
Vol 2 (46) ◽  
pp. 10017-10030 ◽  
Author(s):  
Guiling Zhang ◽  
Sun Peng ◽  
Yan Shang ◽  
Zhao-Di Yang ◽  
Xiao Cheng Zeng

Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods.


2016 ◽  
Vol 18 (6) ◽  
pp. 4333-4344
Author(s):  
Cuicui Sun ◽  
Guiling Zhang ◽  
Yan Shang ◽  
Zhao-Di Yang ◽  
Xiaojun Sun

Electronic structures and transport properties of prototype MoS2 nanotube (15, 0) nanocables, including undoped PSi@MoS2 and B- and P-doped PSi@MoS2 (where PSi refers to polysilane), are investigated using the density functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84978-84984 ◽  
Author(s):  
Fang Xie ◽  
Zhi-Qiang Fan ◽  
Xiao-Jiao Zhang ◽  
Jian-Ping Liu ◽  
Hai-Yan Wang ◽  
...  

We investigate the electronic transport properties of a single cruciform diamine molecule connected to zigzag graphene nanoribbon electrodes by using the non-equilibrium Green's function formalism with density functional theory.


RSC Advances ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 1400-1409 ◽  
Author(s):  
L. Sun ◽  
Z. H. Zhang ◽  
H. Wang ◽  
M. Li

Using the first-principles method based on density-functional theory and non-equilibrium Green's function, the electronic properties of zigzag ZPNRs terminated with NM atoms, as well as a pristine case, were studied systematically.


Nanoscale ◽  
2014 ◽  
Vol 6 (19) ◽  
pp. 11121-11129 ◽  
Author(s):  
Ming-Xing Zhai ◽  
Xue-Feng Wang ◽  
P. Vasilopoulos ◽  
Yu-Shen Liu ◽  
Yao-Jun Dong ◽  
...  

We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method.


RSC Advances ◽  
2014 ◽  
Vol 4 (94) ◽  
pp. 51838-51844 ◽  
Author(s):  
Tian Zhang ◽  
Yan Cheng ◽  
Xiang-Rong Chen

We investigate the contact geometry and electronic transport properties of a GaN pair sandwiched between Au electrodes by performing density functional theory plus the non-equilibrium Green's function method.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7042-7047 ◽  
Author(s):  
Caiping Cheng ◽  
Huifang Hu ◽  
Zhaojin Zhang ◽  
Haibo Zhang

The band structures and electronic transport properties of AA-P2-doped armchair silicene nanoribbons (ASiNRs) were investigated by applying density-functional theory in combination with the non-equilibrium Green’s function method.


2015 ◽  
Vol 3 (16) ◽  
pp. 4039-4049 ◽  
Author(s):  
Xiu Yan Liang ◽  
Guiling Zhang ◽  
Peng Sun ◽  
Yan Shang ◽  
Zhao-Di Yang ◽  
...  

The electronic structures and transport properties of prototype carbon nanotube (CNT) (10,10) and boron–nitride nanotube (BNNT) (10,10) nanocables, including (VBz)n@CNT and (VBz)n@BNNT (where Bz = C6H6), are investigated using the density functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods.


Sign in / Sign up

Export Citation Format

Share Document