Enhanced surface hydrophilicity of thin-film composite membranes for nanofiltration: an experimental and DFT study

2015 ◽  
Vol 17 (37) ◽  
pp. 24201-24209 ◽  
Author(s):  
Zhiwei Lv ◽  
Jiahui Hu ◽  
Xuan Zhang ◽  
Lianjun Wang

In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase.

2020 ◽  
Vol 8 (6) ◽  
pp. 3238-3245 ◽  
Author(s):  
Shushan Yuan ◽  
Gang Zhang ◽  
Junyong Zhu ◽  
Natalie Mamrol ◽  
Suilin Liu ◽  
...  

This study demonstrates the application of a hydrogel as the aqueous phase in interfacial polymerization for the synthesis of a thin film composite membrane with ultrahigh permeability.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Yu-Hsuan Chiao ◽  
Tanmoy Patra ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Ting Chen ◽  
Jorge Almodovar ◽  
...  

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.


2014 ◽  
Vol 4 (3) ◽  
pp. 174-181 ◽  
Author(s):  
Ahmad Akbari ◽  
Sayed Majid Mojallali Rostami

A novel polyamide thin film composite (PATFC) as a nanofiltration (NF) membrane was prepared by a modified interfacial polymerization (IP) reaction. Herein trimesoyl chloride and piperazine as the reagents, dimethyl sulfoxide (DMSO) as additive and polysulfone (PSF) ultrafiltration membrane as support were used respectively. The main goal of the present study is to improve TFC membrane water flux by addition of DMSO into the aqueous phase of IP reaction, without considerable rejection loss. Morphological, roughness, and chemical structures of the PATFC membrane were analyzed by scanning electron microscopy, atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FT-IR), respectively. The AFM analysis demonstrated that as DMSO was added to the aqueous phase, the surface roughness of PATFC membrane increased. Results showed that the pure water flux of modified-PATFC membranes increased up to 46%, compared to nonmodified-PATFC membrane, while salt rejection was not sacrificed considerably. The results elucidated that the addition of DMSO leads to an increase in the number of cross-linking bonds between monomers and pore diameter, which results in enhancement of the membrane flux. Finally, the results showed that the newly developed PATFC membrane is a high-performance NF membrane which augments the efficiency of conventional PATFC membrane.


Sign in / Sign up

Export Citation Format

Share Document