In situ synthesized Au–Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol

2016 ◽  
Vol 40 (2) ◽  
pp. 1685-1692 ◽  
Author(s):  
Min Hong ◽  
Lidan Xu ◽  
Fangli Wang ◽  
Shuling Xu ◽  
Haibo Li ◽  
...  

Graphene oxide-supported hollow Au–Ag alloy nanocages were synthesized here, which exhibited short induction time, high catalytic activity and good stability against agglomeration for the reduction of 4-nitrophenol to 4-aminophenol.

RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64937-64945 ◽  
Author(s):  
Yajiao Song ◽  
Jianhua Lü ◽  
Bingxin Liu ◽  
Changli Lü

Au NPs were generated via in situ reduction on copolymer brush P(OEGMA-co-MQ) functionalized GO. MQ units in the brushes as capping agents could stabilize the Au NPs. The Au NPs–GO hybrid exhibited high catalytic activity for the reduction of 4-NP.


2018 ◽  
Vol 232 (3) ◽  
pp. 431-443 ◽  
Author(s):  
Xigang Du ◽  
Yonghua Duan ◽  
Jun Zhang ◽  
Gang Mi

AbstractCoMo nanoparticles (NPs) supported on reduced graphene oxide (RGO) were synthesized by a one-stepin situco-reduction of an aqueous solution of cobalt(II) chloride, sodium molybdate dihydrate and graphene oxide (GO) using NaBH4as the sole reductant under ambient conditions. The powder XRD, FTIR, EDS and TEM were employed to characterize the structure, size and composition of the CoMo/RGO catalysts. The as-synthesized Co0.9Mo0.1/RGO catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. The as-synthesized Co0.9Mo0.1/RGO nanocatalysts exhibited much higher catalytic activity than Co/RGO, Mo/RGO and the RGO-free Co0.9Mo0.1counterpart. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co0.9Mo0.1/RGO has first order kinetics with respect to the the catalyst concentration, but zero order kinetics with respect to the substrate concentration. The Co0.9Mo0.1/RGO catalyst has a turnover frequency (TOF) of 15.8 mol H2·(mol·Co0.9Mo0.1/RGO)−1·min−1at 25°C. Furthermore, the Co0.9Mo0.1/RGO show good recyclability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method can be easily extended to the facile preparation of other RGO-based metallic systems.


Author(s):  
Hany A. Elazab ◽  
Tamer T. El-Idreesy

This paper reported a scientific approach adopting microwave-assisted synthesis as a synthetic route for preparing highly active palladium nanoparticles stabilized by polyvinylpyrrolidone (Pd/PVP) and supported on reduced Graphene oxide (rGO) as a highly active catalyst used for Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (6500) and turnover frequency of 78000 h-1. Pd/PVP nanoparticles supported on reduced Graphene oxide nanosheets (Pd-PVP/rGO) showed an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction of palladium and in the presence of Gaphene oxide (GO) nanosheets using ethylene glycol as a solvent and also as a strong reducing agent. The highly active and recyclable catalyst has so many advantages including the use of mild reaction conditions, short reaction times in an environmentally benign solvent system. Moreover, the prepared catalyst could be recycled for up to five times with nearly the same high catalytic activity. Furthermore, the high catalytic activity and recyclability of the prepared catalyst are due to the strong catalyst-support interaction. The defect sites in the reduced Graphene oxide (rGO) act as nucleation centers that enable anchoring of both Pd/PVP nanoparticles and hence, minimize the possibility of agglomeration which leads to a severe decrease in the catalytic activity. Copyright © 2019 BCREC Group. All rights reserved 


RSC Advances ◽  
2014 ◽  
Vol 4 (28) ◽  
pp. 14586-14591 ◽  
Author(s):  
Siyavash Kazemi Movahed ◽  
Rahele Esmatpoursalmani ◽  
Ayoob Bazgir

An N-heterocyclic carbene Pd complex immobilized on GO with an ionic liquid framework synthesized by the modification of GO through a silylation reaction displayed a high catalytic activity in the Suzuki reaction.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 25867-25879
Author(s):  
Parisa Moradi ◽  
Maryam Hajjami

Catalytic activity of supported copper on magnetic graphene oxide was investigated as a selective and reusable nanocatalyst in the synthesis of diaryl ethers and biphenyls.


2021 ◽  
Author(s):  
Ruixue Wang ◽  
Ying Yue ◽  
Huiying Wei ◽  
Jinxin Guo ◽  
Yanzhao Yang

Here, a novel synthetic route of ceria-based nanocatalysts with high catalytic activity and excellent stability was constructed by utilizing function groups from surface ligands. The surface of ceria nanorods were...


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12487-12496 ◽  
Author(s):  
Haichao Duan ◽  
Yu Yang ◽  
Jianhua Lü ◽  
Changli Lü

We report a facile, mussel-inspired construction of a thermo-responsive diblock copolymer-anchored rGO support for superfine PdNPs with high catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document