High proton conductivity of sulfonated methoxyphenyl-containing poly(arylene ether ketone) for proton exchange membranes

RSC Advances ◽  
2015 ◽  
Vol 5 (130) ◽  
pp. 107982-107991 ◽  
Author(s):  
Bo Dong ◽  
Yan Wang ◽  
Jinhui Pang ◽  
Shaowei Guan ◽  
Zhenhua Jiang

A polyelectrolyte membrane based on sulfonated methoxyphenyl-containing poly(arylene ether ketone) (SMP-PAEK) was obtained, which exhibited suitable proton conductivities and excellent mechanical properties.

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.


RSC Advances ◽  
2020 ◽  
Vol 10 (42) ◽  
pp. 24772-24783 ◽  
Author(s):  
Shouping Wang ◽  
Fugang He ◽  
Qiang Weng ◽  
Diao Yuan ◽  
Pei Chen ◽  
...  

A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3425 ◽  
Author(s):  
Zhai ◽  
Li

As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic–inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM–polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM–polymer hybrid PEMs for future fuel cell applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 83320-83330 ◽  
Author(s):  
Lishuang Xu ◽  
Hailan Han ◽  
Meiyu Liu ◽  
Jingmei Xu ◽  
Hongzhe Ni ◽  
...  

The acid–base interaction between HPW and the amino groups can immobilize HPW to maintain high proton conductivity at medium-high temperature in the composite membranes.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1297 ◽  
Author(s):  
Yang Zhao ◽  
Xue Li ◽  
Zhongyang Wang ◽  
Xiaofeng Xie ◽  
Wei Qian

Novel proton exchange membranes (PEMs) based on graft copoly(arylene ether sulfone)s with enhanced phase-separated morphology were prepared using atom transfer radical polymerization (ATRP). A series of PEMs with different graft lengths and sulfonation degrees were prepared. The phase-separated morphologies were confirmed by transmission electron microscopy. Among the membranes prepared and evaluated, PAESPS18S2 exhibited considerably high proton conductivity (0.151 S/cm, 85 °C), benefitting from the graft polymer architecture and phase-separated morphology. The membranes also possessed excellent thermal and chemical stabilities. Highly conductive and stable copoly(arylene ether sulfone)-based membranes would be promising candidates as polymer electrolytes for fuel cell applications.


Sign in / Sign up

Export Citation Format

Share Document