scholarly journals Sulfonated Binaphthyl-Containing Poly(arylene ether ketone)s with Rigid Backbone and Excellent Film-Forming Capability for Proton Exchange Membranes

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.

RSC Advances ◽  
2015 ◽  
Vol 5 (130) ◽  
pp. 107982-107991 ◽  
Author(s):  
Bo Dong ◽  
Yan Wang ◽  
Jinhui Pang ◽  
Shaowei Guan ◽  
Zhenhua Jiang

A polyelectrolyte membrane based on sulfonated methoxyphenyl-containing poly(arylene ether ketone) (SMP-PAEK) was obtained, which exhibited suitable proton conductivities and excellent mechanical properties.


2019 ◽  
Vol 4 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Dinh Cong Tinh Vo ◽  
Minh Dat Thinh Nguyen ◽  
Dukjoon Kim

In the proton exchange membrane fuel cell, durability has recently been the critical issue in its operation.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98854-98860 ◽  
Author(s):  
Guibin Li ◽  
Chengji Zhao ◽  
Chongyi Zhu ◽  
Chunyu Ru ◽  
Xuefeng Li ◽  
...  

The PA/Q-SCT-NPAEK-xx membranes with good proton conductivity, mechanical and thermal stabilities were prepared successfully.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1570 ◽  
Author(s):  
A. Rico-Zavala ◽  
J. L. Pineda-Delgado ◽  
A. Carbone ◽  
A. Saccà ◽  
E. Passalacqua ◽  
...  

The aim of this work is the evaluation of a Sulfonated Poly Ether-Ether Ketone (S-PEEK) polymer modified by the addition of pure Santa Barbara Amorphous-15 (SBA-15, mesoporous silica) and SBA-15 previously impregnated with phosphotungstic acid (PWA) fillers (PWA/SBA-15) in order to prepare composite membranes as an alternative to conventional Nafion® membranes. This component is intended to be used as an electrolyte in electrochemical energy systems such as hydrogen and methanol Proton Exchange Membrane Fuel Cell (PEMFC) and Electrochemical Hydrogen Pumping (EHP). The common requirements for all the applications are high proton conductivity, thermomechanical stability, and fuel and oxidant impermeability. The morphology of the composite membranes was investigated by Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis. Water Uptake (Wup), Ion Exchange Capacity (IEC), proton conductivity, methanol permeability and other physicochemical properties were evaluated. In PEMFC tests, the S-PEEK membrane with a 10 wt.% SBA-15 loading showed the highest performance. For EHP, the inclusion of inorganic materials led to a back-diffusion, limiting the compression capacity. Concerning methanol permeability, the lowest methanol crossover corresponded to the composites containing 5 wt.% and 10 wt.% SBA-15.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yi-Chiang Huang ◽  
Ruei-Hong Tai ◽  
Hsu-Feng Lee ◽  
Po-Hsun Wang ◽  
Ram Gopal ◽  
...  

A series of sterically hindered, sulfonated, poly(arylene ether) polymers were synthesized by nucleophilic polycondensation reaction using 4,4′′′′-difluoro-3,3′′′′-bistrifluoromethyl-2′′,3′′,5′′,6′′-tetraphenyl-[1,1′;4′,1′′;4′′,1′′′;4′′′,1′′′′]-pentaphenyl and 4,4′-biphenol and were prepared through postpolymerization sulfonation. The chemical structures were confirmed by1H NMR. Subsequent to sulfonation, solvent-casting membranes were provided ion exchange capacity (IEC) values ranging from 0.39 to 2.90 mmol/g. Proton conductivities of membranes ranged from 143 to 228 mS/cm at 80°C under fully humidified conditions which were higher than that of Nafion 117. The membrane also exhibited considerably dimension stability, oxidative stability, and hydrolytic stability. The microphase structure was investigated by transmission electron microscopy (TEM) and the ionic aggregation of sulfonic acid groups exhibited spherical ionic clusters with well-developed phase separated morphology. The results indicated that the membranes are promising candidates for application as proton exchange membranes. This investigation demonstrates introducing multiphenylated moieties to create a high free volume polymer that provides dimensionally stable and high proton conductivity membranes.


2014 ◽  
Vol 577 ◽  
pp. 53-57
Author(s):  
Hang Wei ◽  
Guang Li

Sulfonated poly (arylene ether sulfone) s (SPAESs) exhibit good proton conductivity, thermal and mechanical properties, could act as candidates of proton exchange membranes for fuel cells. At the same time, the poor oxidative stability and excessive swelling ratio of SPAESs bring limitations for its further use. In this article, PAN was employed to mix with SPAES, and then SPAES/PAN blend membranes were prepared from the blend solution by casting. The water uptake, dimensional and oxidative stability, proton conductivity were measured with respect to the addition content of PAN, the phase morphology of the resultant SPAES/PAN were also observed by SEM. The results explained that the corporation of PAN into SPAES could reduce the water uptake and improve the oxidative stability of the obtained membranes compared with the pristine SPAES membrane. That the PAN phase distributed as separated domains in SPAES matrix was found, the interaction between SPAES and PAN may be present, which is responsible for the improvement of dimensional and oxidative stability. Although the proton conductivity of the blend membranes became reduced with increase of PAN content in the SPAES/PAN blend, the conductivity of 0.0265S/cm at 30°C could still be reached, satisfying the requirement for proton exchange membrane Fuel Cell


Sign in / Sign up

Export Citation Format

Share Document