Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes

RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 51989-51996 ◽  
Author(s):  
Shu-Ru Chung ◽  
Sheng-Shiun Chen ◽  
Kuan-Wen Wang ◽  
Cyuan-Bin Siao

In this study, the effect of quantum dot (QD) addition and photoluminescence quantum yield (PL QY) of QDs on the luminous efficacy and color rendering index (CRI) of white light-emitting diodes (LEDs) has been investigated.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chun-Chin Tsai

High color rendering index performance has been required for phosphor-converted warm-white light-emitting diodes (PC-WWLEDs) in lighting industry. The characteristics of low-temperature fabricated phosphor (yellow: Ce3+:YAG, green: Tb3+:YAG, and red: CaAlClSiN3:Eu2+) doped glass were presented for applications to high color rendering index warm-white-light-emitting diodes. Color coordinates (x, y) = (0.36, 0.29), quantum yield (QY) = 55.6%, color rending index (CRI) = 85.3, and correlated color temperature (CCT) = 3923 K were characterized. Glass-based PC-WWLEDs was found able to maintain good thermal stability for long-time high-temperature operation. QY decay, CRI remenance, and chromaticity shift were also analyzed for glass- and silicone-based high-power PC-WLEDs by thermal aging at 150°C and 250°C for industrial test standard’s aging time 1008 hours. Better than the silicone’s, thermal stability of glass-based PC-WLEDs has been improved. The resulted high color rendering index (CRI) glass phosphor potentially can be used as a phosphor layer for high-performance and low-cost PC-WLEDs used in next-generation indoor solid-state lighting applications.


Sign in / Sign up

Export Citation Format

Share Document