Effect of MIL-53 on phase inversion and gas separation performance of mixed matrix hollow fiber membranes

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69124-69134 ◽  
Author(s):  
Haitao Zhu ◽  
Xingming Jie ◽  
Lina Wang ◽  
Guodong Kang ◽  
Dandan Liu ◽  
...  

The MIL-53 non-solvent effect influenced the phase inversion of spinning dope, and the MOF-containing hollow fiber membrane structure was optimized.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Haitao Zhu ◽  
Xingming Jie ◽  
Yiming Cao

The metal-organic framework (MOFs) of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM) with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2selectivity. The CO2permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.


2019 ◽  
Vol 15 (1) ◽  
pp. 50-53
Author(s):  
Kok Chung Chong ◽  
Yin Yin Chan ◽  
Woei Jye Lau ◽  
Soon Onn Lai ◽  
Ahmad Fauzi Ismail ◽  
...  

Oxygen enriched air (OEA) is widely applied in various areas such as chemical and medical applications. Currently, cryogenic distillation and pressure swing adsorption are the two common technologies that being commercially used for i the production of OEA. However, these two techniques are not economically favorable due to required intensive energy and large built-up area. With the advancement of membrane technology in separation process, it garners the interest from both industrial and academic to explore the feasibility of membrane in gas separation. In this study, polysulfone (PSF) hollow fiber membranes with poly(ether block amide) (PEBAX) coating were used for the separation of O2/N2 gas. The hollow fiber membranes used in this work were fabricated by phase inversion spinning process using PSF pellet, along with N,N-dimetyhlacetamide (DMAc) and ethanol (EtOH) as solvent and co-solvent, whereas tetrahydrofuran (THF) as additive. The fabricated membrane exhibited dense structure in the inner layer whereas finger like layer at the outer surface. The formation of this structure was attributed by rapid phase inversion of the solution arose from strong solvent used. The EDX surface mapping analysis confirmed the formation of PEBAX coating on the membrane surface. Gas permeation study in this work illustrated that the pristine PSF membrane exhibited better gas separation performance relative to the PEBAX coated membrane with 20% higher in terms of permeance. The results obtained from this work suggested that the PEBAX coating enhanced the membrane surface but not certain to improve the gas separation performance. Further study on the PEBAX materials for the membrane coating is essential to polish its potential in gas separation.


2015 ◽  
Vol 44 (8) ◽  
pp. 1195-1201 ◽  
Author(s):  
Mukhlis A Rahman ◽  
Mohd Akmal Ghazali ◽  
Wan Muhammad Solehin Wan Abd Aziz ◽  
Mohd Hafiz Dzarfan Othman ◽  
Juhana Jaafar ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 865
Author(s):  
Yu-Ting Lin ◽  
Ming-Yen Wey ◽  
Hui-Hsin Tseng

This work reported on the fabrication and investigation of a mixed matrix hollow fiber membrane (MMHFM) by incorporating commercially available alumina particles into a polyetherimide (PEI) polymer matrix. These MMHFMs were prepared by the dry-wet spinning technique. Accordingly, optimizing the spinning parameters, including the air gap distance and flow rate ratio, is key to determining the gas separation performance. However, there are few studies regarding the effect of the filler dimensions. Consequently, three sizes of alumina particles, 20 nm, 30 nm, and 1000 nm, were respectively added into the PEI phase to examine the influence of filler size on gas permeation property. Moreover, the permeation properties of lower hydrocarbons (i.e., ethane and propane) were also measured to evaluate potential for emerging applications. The results indicated the as-synthesized membrane exhibited a remarkable hydrogen permeance of 1065.24 GPU, and relatively high separation factors of 4.53, 5.77, and 5.39 for H2/CO2, H2/C2H6, and H2/C3H8, respectively. This resulted from good compatibility between the larger fillers and the PEI polymer, as well as a reduction in the finger-like voids. Overall, the MMHFM in this work was deemed to be a promising candidate to separate hydrogen from gas streams, based on the comparison of the separation performance against other reported studies.


2014 ◽  
Vol 625 ◽  
pp. 726-729 ◽  
Author(s):  
Serene Sow Mun Lock ◽  
Kok Keong Lau ◽  
Mohd Shariff Azmi

A “Multi-component Progressive Cell Balance” approach has been applied to characterize the gas separation of the radial crossflow hollow fiber membrane module. The mathematical model is an indispensable tool to evaluate the separation performance of membrane material towards different components. The approach is required to be implemented since there is scarcely available mathematical model to characterize the two dimensional radial crossflow. In addition, the currently available mathematical model is confined to the ideal binary system, which constraints its applicability in real membrane separation process with many components. The significance of the developed multi-component mathematical model as compared to the model adapting the ideal binary simulation condition is demonstrated in this study.


Sign in / Sign up

Export Citation Format

Share Document