scholarly journals Palladium catalyzed Suzuki cross-coupling of benzyltrimethylammonium salts via C–N bond cleavage

RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15805-15808 ◽  
Author(s):  
Tao Wang ◽  
Shuwu Yang ◽  
Silin Xu ◽  
Chunyu Han ◽  
Ge Guo ◽  
...  

A Pd catalyzed Suzuki cross-coupling of a benzyltrimethylammonium salt is described. This reaction offers a highly efficient approach to diarylmethanes and also paves the way for the application of benzyltrimethylammonium salts in Pd catalyzed cross-coupling reactions.

Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 383-390 ◽  
Author(s):  
Yiyuan Peng ◽  
Xinglin Ye ◽  
Jian Huang ◽  
Zhihong Deng ◽  
Jianjun Yuan

In this paper, exploration of our continuous interests on late-stage derivation of quinozaline core is described. A wide array of 4-(1H-indol-1-yl)quinazolines were obtained in good to excellent yields through palladium-catalyzed cross-coupling of 4-tosyloxyquinazolines with indole derivatives under mild reaction conditions.


Synthesis ◽  
2021 ◽  
Author(s):  
chang wen ◽  
Qing Han Li ◽  
Chuan Wu ◽  
ruiqiang Luo ◽  
Feng Chen

A highly efficient and simple route for the synthesis of 2-substituted benzo[b]furans has been developed by Palladium catalyzed the cross-coupling reaction of 2-halobenzo[b]furans with aryl, alkynyl and alkylaluminum reagents. Various 2-aryl, 2-alkynyl and 2-alkyl substituted benzo[b]furans derivatives can be obtained with 23-97% isolated yields using 2-3 mol% PdCl2/ 4-6 mol% XantPhos as the catalyst under mild reaction conditions. The aryls bearing electron-donating or electron-withdrawing groups in 2-halobenzo[b]furans gave products in 40-97% isolated yields. In addition, aluminum reagents containing thienyl, furanyl trimethylsilanyl and benzyl groups worked efficiently with 2-halobenzo[b]furans as well, and three bioactive molecules with 2-substituted benzo[b]furan skeleton were synthesized. Furthermore, the broad substrates scope and the typical maintenance of vigorous efficiency on gram scale make this protocol a potentially practical method to synthesize 2-substituted benzo[b]furans derivatives. On the basis of the experimental results, a possible catalytic cycle has been proposed.


Synlett ◽  
2020 ◽  
Author(s):  
Chao-Jun Li ◽  
Huiying Zeng ◽  
Yatao Lang

AbstractSubstituted aromatic compounds play important roles in materials, biological agents, dyes, etc. Thus, the synthesis of substituted aromatic compounds has been a hot topic throughout the history of organic chemistry. Traditionally, the Friedel–Crafts reaction was a powerful tool for synthesizing substituted aromatic compounds. In recent decades, metal-catalyzed cross-coupling reactions were well developed via carbon–heteroatom bond cleavage, however, having difficulties towards some strong bonds, such as C(Ar)–OH. To overcome such challenges, newer strategies are needed. In this review, we summarize the recent efforts in the development of dearomatization–rearomatization strategy for cross-coupling reactions via C(Ar)–O bond cleavage.1 Introduction2 Dearomatization–Rearomatization Strategy for Cross-Coupling of Phenols3 Dearomatization–Rearomatization Strategy for Cross-Coupling of Biphenols4 Dearomatization–Rearomatization Strategy for Cross-Coupling of Diphenyl Ethers5 Dearomatization–Rearomatization Strategy for Cross-Coupling of Indoles6 Summary


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


Sign in / Sign up

Export Citation Format

Share Document