Palladium-Catalyzed Cross-Coupling Reactions of 4-Tosyl­oxyquinazolines with Indoles: An Efficient Approach to 4-(1H-Indol-1-yl)quinazolines

Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 383-390 ◽  
Author(s):  
Yiyuan Peng ◽  
Xinglin Ye ◽  
Jian Huang ◽  
Zhihong Deng ◽  
Jianjun Yuan

In this paper, exploration of our continuous interests on late-stage derivation of quinozaline core is described. A wide array of 4-(1H-indol-1-yl)quinazolines were obtained in good to excellent yields through palladium-catalyzed cross-coupling of 4-tosyloxyquinazolines with indole derivatives under mild reaction conditions.

Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


2020 ◽  
Author(s):  
Xingwang Deng ◽  
Guan Zhou ◽  
Xiao Han ◽  
Khadim Ullah ◽  
Rajavel Srinivasan

Potassium acyltrifluoroborates (KATs) are opening up new avenues in chemical biology, materials science and synthetic organic chemistry due to their intriguing reactivities. However, the synthesis of these compounds remains mostly complicated and time-consuming. This lack of a rapid and facile synthetic route has hindered the widespread adoption of KAT-based chemistry, especially in the areas of compound library synthesis and drug discovery. Herein, we have developed chemoselective Pd-catalyzed approaches for the late-stage diversification of arenes bearing pre-functionalized KATs. These approaches feature chemoselective cross-coupling, rapid diversification, functional group tolerance, mild reaction conditions, and high yields.


2020 ◽  
Vol 17 (5) ◽  
pp. 559-569
Author(s):  
Ingrid Caroline Vaaland ◽  
Magne Olav Sydnes

Combining palladium catalyzed reactions in one-pot reactions represents an efficient and economical use of catalyst. The Suzuki-Miyaura cross-coupling has been proven to be a reaction which can be combined with other palladium catalyzed reactions in the same pot. This mini-review will highlight some of the latest examples where Suzuki-Miyaura cross-coupling reactions have been combined with other palladium catalyzed reactions in one-pot reaction. Predominantly, examples with homogeneous reaction conditions will be discussed in addition to a few examples from the authors where Pd/C have been used as a catalyst.


RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15805-15808 ◽  
Author(s):  
Tao Wang ◽  
Shuwu Yang ◽  
Silin Xu ◽  
Chunyu Han ◽  
Ge Guo ◽  
...  

A Pd catalyzed Suzuki cross-coupling of a benzyltrimethylammonium salt is described. This reaction offers a highly efficient approach to diarylmethanes and also paves the way for the application of benzyltrimethylammonium salts in Pd catalyzed cross-coupling reactions.


2020 ◽  
Author(s):  
Xingwang Deng ◽  
Guan Zhou ◽  
Xiao Han ◽  
Khadim Ullah ◽  
Rajavel Srinivasan

Potassium acyltrifluoroborates (KATs) are opening up new avenues in chemical biology, materials science and synthetic organic chemistry due to their intriguing reactivities. However, the synthesis of these compounds remains mostly complicated and time-consuming. This lack of a rapid and facile synthetic route has hindered the widespread adoption of KAT-based chemistry, especially in the areas of compound library synthesis and drug discovery. Herein, we have developed chemoselective Pd-catalyzed approaches for the late-stage diversification of arenes bearing pre-functionalized KATs. These approaches feature chemoselective cross-coupling, rapid diversification, functional group tolerance, mild reaction conditions, and high yields.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Kifah S. M. Salih ◽  
Younis Baqi

Cross-coupling reactions furnishing carbon–carbon (C–C) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Negishi, Heck, Kumada, Sonogashira, Stille, Suzuki, and Hiyama, utilizing palladium or its salts as catalysis have, for decades, attracted and inspired researchers affiliated with academia and industry. Tremendous efforts have been paid to develop and achieve more sustainable reaction conditions, such as the reduction in energy consumption by applying the microwave irradiation technique. Chemical reactions under controlled microwave conditions dramatically reduce the reaction time and therefore resulting in increase in the yield of the desired product by minimizing the formation of side products. In this review, we mainly focus on the recent advances and applications of palladium catalyzed cross-coupling carbon–carbon bond formation under microwave technology.


Synlett ◽  
2017 ◽  
Vol 29 (03) ◽  
pp. 330-335 ◽  
Author(s):  
Zheng-Jun Quan ◽  
Xi-Cun Wang ◽  
Ming-Xia Liu ◽  
Hai-Peng Gong

Dihetaryl disulfides were used as electrophiles in a palladium-catalyzed carbon–carbon cross-coupling reaction with arylsilanes to ­realize a Hiyama-type reaction. This unique transformation shows high reactivity, excellent functional-group tolerance, and mild reaction conditions, making it an attractive alternative to conventional cross-coupling approaches for carbon−carbon bond construction.


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


Sign in / Sign up

Export Citation Format

Share Document