scholarly journals Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds

RSC Advances ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Yong Pan ◽  
Weihua Zhu

We designed four cage compounds by introducing intramolecular linkages into the bicyclo-HMX framework. Their molecular and electronic structures, energetic properties, thermal stability, and impact sensitivity were evaluated using DFT.

2017 ◽  
Vol 5 (21) ◽  
pp. 10437-10441 ◽  
Author(s):  
Dheeraj Kumar ◽  
Gregory H. Imler ◽  
Damon A. Parrish ◽  
Jean'ne M. Shreeve

A rare high energy density oxidizer with excellent thermal stability along with good oxygen balance and energetic properties was synthesized and fully characterized.


2019 ◽  
Vol 97 (2) ◽  
pp. 86-93 ◽  
Author(s):  
Yong Pan ◽  
Weihua Zhu ◽  
Heming Xiao

A new family of azaoxaadamantane cage compounds were firstly designed by introducing the oxygen atom into hexanitrohexaazaoxaadmantane (HNHAA) to replace the N–NO2 group. Their properties including heats of formation (HOFs), detonation properties, strain energies, thermal stability, and sensitivity were extensively studied by using density functional theory. All of the title compounds exhibit surprisingly high density (ρ > 2.01 g/cm3) and excellent detonation properties (detonation velocity (D) > 9.29 km/s and detonation pressure (P) > 40.80 GPa). In particular, B (4,8,9,10-tetraazadioxaadamantane) and C (6,8,9,10-tetraazadioxaadamantane) have a remarkably high D and P values (9.70 km/s and 44.45 GPa, respectively), which are higher than that of HNHAA or CL-20. All of the title compound have higher thermal stability and lower sensitivity (h50 > 19.58 cm) compared with the parent compound HNHAA. Three triazatrioxaadamantane cage compounds, D (6,8,9-triazatrioxaadamantane), E (6,8,10-triazatrioxaadamantane), and F (8,9,10-triazatrioxaadamantane), are expected to be relatively insensitive explosives. All of the title compounds exhibit a combination of high denotation properties, good thermal stability, and low insensitivity.


2012 ◽  
Vol 19 (2) ◽  
pp. 571-580 ◽  
Author(s):  
Wei-Jie Chi ◽  
Lu-Lin Li ◽  
Bu-Tong Li ◽  
Hai-Shun Wu

Sign in / Sign up

Export Citation Format

Share Document