Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors

2017 ◽  
Vol 5 (18) ◽  
pp. 8155-8186 ◽  
Author(s):  
Guangxun Zhang ◽  
Xiao Xiao ◽  
Bing Li ◽  
Peng Gu ◽  
Huaiguo Xue ◽  
...  

Controlled synthesis for electrode materials and excellent electrochemical performances were introduced for advanced supercapacitors.

Author(s):  
Wen-Wei Song ◽  
Bing Wang ◽  
Xiao-Man Cao ◽  
Qiang Chen ◽  
Zhengbo Han

Metal-organic frameworks (MOFs)-derived transition-metal oxides and transition-metal phosphides have great application potential as electrode materials for supercapacitors, owing to the excellent redox activity and high conductivity. However, their electrochemical performances...


Author(s):  
Bibekananda De ◽  
Soma Banerjee ◽  
Kapil Dev Verma ◽  
Tanvi Pal ◽  
P. K. Manna ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 43-59 ◽  
Author(s):  
Yufei Zhang ◽  
Laiquan Li ◽  
Haiquan Su ◽  
Wei Huang ◽  
Xiaochen Dong

Binary transition metal oxides (BTMOs) possess higher reversible capacity, better structural stability and electronic conductivity, and have been widely studied to be novel electrode materials for supercapacitors.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1102
Author(s):  
Qin Chen ◽  
Yanan Chong ◽  
Mumin Rao ◽  
Ming Su ◽  
Yongcai Qiu

Ion doping in transition metal oxides is always considered to be one of the most effective methods to obtain high-performance electrochemical supercapacitors because of the introduction of defective surfaces as well as the enhancement of electrical conductivity. Inspired by the smelting process, an ancient method, quenching is introduced for doping metal ions into transition metal oxides with intriguing physicochemical properties. Herein, as a proof of concept, α-Fe2O3 nanorods grown on carbon cloths (α-Fe2O3@CC) heated at 400 °C are rapidly put into different aqueous solutions of alkaline earth metal salts at 4 °C to obtain electrodes doped with different alkaline earth metal ions (M-Fe2O3@CC). Among them, Sr-Fe2O3@CC shows the best electrochemical capacitance, reaching 77.81 mF cm−2 at the current of 0.5 mA cm−2, which is 2.5 times that of α-Fe2O3@CC. The results demonstrate that quenching is a feasible new idea for improving the electrochemical performances of nanostructured materials.


2010 ◽  
Vol 5 (8) ◽  
pp. 1824-1829 ◽  
Author(s):  
Bin Dong ◽  
Yingzhou Huang ◽  
Naisen Yu ◽  
Yurui Fang ◽  
Baosheng Cao ◽  
...  

NANO ◽  
2012 ◽  
Vol 07 (02) ◽  
pp. 1230002 ◽  
Author(s):  
MEISAM VALIZADEH KIAMAHALLEH ◽  
SHARIF HUSSEIN SHARIF ZEIN ◽  
GHASEM NAJAFPOUR ◽  
SUHAIRI ABD SATA ◽  
SURANI BUNIRAN

Electrode materials are the most important factors to verify the properties of the electrochemical supercapacitor. In this paper, the storage principles and characteristics of electrode materials, including carbon-based materials, transition metal oxides and conducting polymers for supercapacitors are depicted in detail. Other factors such as electrode separator and electrolyte are briefly investigated. Recently, several works are conducted on application of multiwalled carbon nanotubes (MWCNTs) and MWCNTs-based electrode materials for supercapacitors. MWCNTs serve in experimental supercapacitor electrode materials result in specific capacitance (SC) value as high as 135 Fg-1. Addition of pseudocapacitive materials such as transition metal oxides and conducting polymers in the MWCNTs results in electrochemical performance improvement (higher capacitance and conductivity). The nanocomposites of MWCNTs and pseudocapacitive materials are the most promising electrode materials for supercapacitors because of their good electrical conductivity, low cost and high mass density.


2020 ◽  
Author(s):  
Huan Pang ◽  
Guangxun Zhang ◽  
Xiao Xiao ◽  
Huaiguo Xue

Sign in / Sign up

Export Citation Format

Share Document