alkaline earth metal ions
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 40)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 11 (23) ◽  
pp. 11383
Author(s):  
Maria Vassaki ◽  
Christina Kotoula ◽  
Petri Turhanen ◽  
Duane Choquesillo-Lazarte ◽  
Konstantinos D. Demadis

Bisphosphonates (BPs) constitute a class of drugs used for the treatment of calcium- and bone-related disorders, including osteoporosis, Paget’s disease, etc. The presence of the anionic phosphonate groups endows them with the ability to act as ligands to metal ions. As a result, the synthesis of complexes or coordination polymers of various structural motifs can be accomplished. In this work, the 3rd generation BP drug risedronate (RIS) was combined with biologically acceptable alkaline earth metal ions (e.g., Ca2+ and Sr2+) in an effort to synthesize new materials. These metal–RIS compounds can operate as controlled delivery systems (CDSs) when exposed to appropriate experimental conditions, such as the low pH of the human stomach. CDS networks containing Ca2+ or Sr2+ and RIS were physicochemically and structurally characterized and were evaluated for their ability to release the free RIS drug during an acid-driven hydrolysis process. Due to the low solubility of RIS at low pH, cationic additives (linear polyethyleneimine and amine-terminated polyaminoamide dendrimer) were utilized as drug solubilizers. Based on the drug release results of this study, there was an attempt to correlate the drug release efficiency with the structural features of these CDSs.


Author(s):  
O. M. Iniaghe ◽  
O. Ibukun

The effects of some alkali metal ions (Na+ and K+) and alkaline earth metal ions (Mg 2+ and Ba2+) on the initial reaction rates of Congregibacter litoralis KT71 β-lactamase hydrolysis of 4-nitrophenyl myristate was investigated by varying the concentrations of the metal ions in the assay mixture which comprised of 100 µl of standard enzyme solution, 200 µl of varying concentration of metal ions, 500 µl of 50 mM sodium phosphate buffer pH 7.5 and 200 µl of 4-nitrophenyl myristate (substrate) which was added last to the assay mixture after an incubation time of 10 minutes at 44 oC. The enzyme activity was measured spectrophotometrically using a UV-780 recording spectrophotometer at a wavelength of 405 nm. The hydrolysis of 4-nitrophenyl myristate to yield 4-nitrophenol was monitored by reading the absorbance at 25 minutes. Results showed that the alkaline earth metal ions (Ba2+ and Mg2+) had higher enzyme activation effect than the alkali metal ions (K+ and Na+) Also, all metal ions except Mg2+ showed enzyme stimulatory effect at low concentrations (<2 mM) but inhibitory at higher ion concentrations (2 mM - 3 mM). Mg 2+ caused a proportionate decrease in enzyme activity from its peak (when metal ion concentration was lowest). Results from this research is of great significance to the industrialist especially where the search for novel lipases with unique characteristics suitable for the industries are inevitable.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chun Sun ◽  
Siyi Du ◽  
Tianze Zhang ◽  
Jie Han

The synthesis and characterization of a novel florescent chemosensor 1 with two different types of cationic binding sites have been reported in this work, which is a calix[4]crown derivative in 1,3-alternate conformation bearing two 2-phenyl-5-(4-dimethylaminopyenyl)-1,3,4-oxadiazole units. The recognition behaviors of 1 in dichloromethane/acetonitrile solution to alkali metal ions (Na+ and K+), alkaline earth metal ions (Mg2+ and Ca2+), and transition metal ions (Co2+, Ni2+, Zn2+, Cd2+, Cu2+, Mn2+, and Ag+) have been investigated by UV-Vis and fluorescence spectra. The fluorescence of 1 might be quenched selectively by Cu2+ due to the photo-induced electron transfer mechanism, and the quenched emission from 1 could be partly revived by the addition of Ca2+ or Mg2+; thus, the receptor 1 might be worked as an on–off switchable fluorescent chemosensor triggered by metal ion exchange.


2021 ◽  
Author(s):  
Gregory Facas ◽  
Vineet Maliekkal ◽  
Matthew Neurock ◽  
Paul Dauenhauer

Alkaline earth metal ions accelerate the breaking of cellulose bonds and control the distribution of products in the pyrolysis of lignocellulose to biofuels and chemicals. Here, the activation of cellulose via magnesium ions was measured over a range of temperatures from 370 to 430 ⁰C for 20 to 2000 milliseconds and compared with activation of cellulose via calcium, another naturally-occurring alkaline earth metal in lignocellulose materials. The experimental approach of pulse heated analysis of solid/surface reactions (PHASR) showed that magnesium significantly catalyzes cellulose activation with a second order rate dependence on the catalyst concentration. An experimental barrier of 45.6 ± 2.1 kcal mol-1 and a pre-factor of 1.18 x 1016 (mmol Mg2+ / g CD)-2 * s-1 was obtained for the activation of α-cyclodextrin (CD), a cellulose surrogate, for catalyst concentrations of 0.1 to 0.5 mmol Mg+2 per gram of CD. First principles density functional theory calculations showed that magnesium ions play a dual role in catalyzing the reaction by breaking the hydrogen bonds with hydroxymethyl groups and destabilizing the reacting cellulose chain, thus making it more active. The calculated barrier of 47 kcal mol-1 is in agreement with the experimentally measured barriers and similar to that for calcium ion catalysts (~50 kcal mol-1).


Author(s):  
Yiran Wang ◽  
Wen Zhang ◽  
Xianjie Zeng ◽  
Tao Deng ◽  
Jianyou Wang

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1102
Author(s):  
Qin Chen ◽  
Yanan Chong ◽  
Mumin Rao ◽  
Ming Su ◽  
Yongcai Qiu

Ion doping in transition metal oxides is always considered to be one of the most effective methods to obtain high-performance electrochemical supercapacitors because of the introduction of defective surfaces as well as the enhancement of electrical conductivity. Inspired by the smelting process, an ancient method, quenching is introduced for doping metal ions into transition metal oxides with intriguing physicochemical properties. Herein, as a proof of concept, α-Fe2O3 nanorods grown on carbon cloths (α-Fe2O3@CC) heated at 400 °C are rapidly put into different aqueous solutions of alkaline earth metal salts at 4 °C to obtain electrodes doped with different alkaline earth metal ions (M-Fe2O3@CC). Among them, Sr-Fe2O3@CC shows the best electrochemical capacitance, reaching 77.81 mF cm−2 at the current of 0.5 mA cm−2, which is 2.5 times that of α-Fe2O3@CC. The results demonstrate that quenching is a feasible new idea for improving the electrochemical performances of nanostructured materials.


Sign in / Sign up

Export Citation Format

Share Document