scholarly journals Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods

2018 ◽  
Vol 20 (37) ◽  
pp. 24099-24108 ◽  
Author(s):  
Yu Matsuda ◽  
Itsuo Hanasaki ◽  
Ryo Iwao ◽  
Hiroki Yamaguchi ◽  
Tomohide Niimi

We propose a novel approach to analyze random walks in heterogeneous medium using a hybrid machine-learning method based on a gamma mixture and a hidden Markov model.

2021 ◽  
Author(s):  
Bu-Yo Kim ◽  
Joo Wan Cha ◽  
Ki-Ho Chang

Abstract. In this study, image data features and machine learning methods were used to calculate 24-h continuous cloud cover from image data obtained by a camera-based imager on the ground. The image data features were the time (Julian day and hour), solar zenith angle, and statistical characteristics of the red-blue ratio, blue–red difference, and luminance. These features were determined from the red, green, and blue brightness of images subjected to a pre-processing process involving masking removal and distortion correction. The collected image data were divided into training, validation, and test sets and were used to optimize and evaluate the accuracy of each machine learning method. The cloud cover calculated by each machine learning method was verified with human-eye observation data from a manned observatory. Supervised machine learning models suitable for nowcasting, namely, support vector regression, random forest, gradient boosting machine, k-nearest neighbor, artificial neural network, and multiple linear regression methods, were employed and their results were compared. The best learning results were obtained by the support vector regression model, which had an accuracy, recall, and precision of 0.94, 0.70, and 0.76, respectively. Further, bias, root mean square error, and correlation coefficient values of 0.04 tenth, 1.45 tenths, and 0.93, respectively, were obtained for the cloud cover calculated using the test set. When the difference between the calculated and observed cloud cover was allowed to range between 0, 1, and 2 tenths, high agreement of approximately 42 %, 79 %, and 91 %, respectively, were obtained. The proposed system involving a ground-based imager and machine learning methods is expected to be suitable for application as an automated system to replace human-eye observations.


2018 ◽  
Vol 11 (4) ◽  
pp. 70 ◽  
Author(s):  
Jung-sik Hong ◽  
Hyeongyu Yeo ◽  
Nam-Wook Cho ◽  
Taeuk Ahn

Since not all suppliers are to be managed in the same way, a purchasing strategy requires proper supplier segmentation so that the most suitable strategies can be used for different segments. Most existing methods for supplier segmentation, however, either depend on subjective judgements or require significant efforts. To overcome the limitations, this paper proposes a novel approach for supplier segmentation. The objective of this paper is to develop an automated and effective way to identify core suppliers, whose profit impact on a buyer is significant. To achieve this objective, the application of a supervised machine learning technique, Random Forests (RF), to e-invoice data is proposed. To validate the effectiveness, the proposed method has been applied to real e-invoice data obtained from an automobile parts manufacturer. Results of high accuracy and the area under the curve (AUC) attest to the applicability of our approach. Our method is envisioned to be of value for automating the identification of core suppliers. The main benefits of the proposed approach include the enhanced efficiency of supplier segmentation procedures. Besides, by utilizing a machine learning method to e-invoice data, our method results in more reliable segmentation in terms of selecting and weighting variables.


2019 ◽  
Vol 32 (10) ◽  
pp. 5889-5900 ◽  
Author(s):  
Adrian Carballal ◽  
Carlos Fernandez-Lozano ◽  
Jonathan Heras ◽  
Juan Romero

Sign in / Sign up

Export Citation Format

Share Document