scholarly journals Structural isomers and low-lying electronic states of gas-phase M+(N2O)n (M = Co, Rh, Ir) ion–molecule complexes

2019 ◽  
Vol 21 (26) ◽  
pp. 13959-13967 ◽  
Author(s):  
Ethan M. Cunningham ◽  
Alexander S. Gentleman ◽  
Peter W. Beardsmore ◽  
Stuart R. Mackenzie

The structures of gas-phase group nine cation–nitrous oxide metal–ligand complexes, M+(N2O)n (M = Co, Rh, Ir; n = 2–7) have been determined by a combination of infrared photodissociation spectroscopy and density functional theory.

2021 ◽  
pp. 1-12
Author(s):  
Halimeh Rajabzadeh ◽  
Ayla Sharafat ◽  
Maryam Abbasi ◽  
Maryam Eslami Gharaati ◽  
Iraj Alipourfard

Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 >  Fav-8 >  Fav-4 >  Fav-3 >  Fav-2 >  Fav-5 >  Fav-1 >  Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.


1999 ◽  
Vol 595 ◽  
Author(s):  
W. R. Wampler ◽  
J. C. Barbour ◽  
C. H. Seager ◽  
S. M. Myers ◽  
A. F. Wright ◽  
...  

AbstractWe have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced by exposure to gas phase or ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Results of channeling measurements are compared with channeling simulations for hydrogen at lattice locations predicted by density functional theory.


2013 ◽  
Vol 321-324 ◽  
pp. 499-502
Author(s):  
Hong Zhou ◽  
Jun Feng Wang ◽  
Jun Qing Wen ◽  
Wei Bin Cheng ◽  
Jun Fei Wang

Density-functional theory has been used to calculate the energetically global-minimum geometries and electronic states of AgnH2S (n=2, 4, 6) clusters. The lowest-energy structures of Ag2, Ag4, Ag6, Ag2H2S, Ag4H2S and Ag6H2S clusters were obtained, respectively. The calculation results show that the lowest-energy structures of Ag2, Ag4and Ag6clusters are planar geometries. The binding energies of Agn(n=2, 4, 6) clusters are gradually increasing in our calculations. Compare the infrared spectrum peaks of Ag4cluster with that of Ag6cluster, which show that the peaks shift to shortwave. After adsorption, we found that the peaks shift to shortwave by comparison.


2005 ◽  
Vol 54 (11) ◽  
pp. 5350
Author(s):  
Cai Jian-Qiu ◽  
Tao Xiang-Ming ◽  
Chen Wen-Bin ◽  
Zhao Xin-Xin ◽  
Tan Ming-Qiu

Sign in / Sign up

Export Citation Format

Share Document