scholarly journals Photoelectrochemical water splitting: an idea heading towards obsolescence?

2018 ◽  
Vol 11 (8) ◽  
pp. 1977-1979 ◽  
Author(s):  
T. Jesper Jacobsson

The production of hydrogen from water and sunlight is a way to address the intermittency in renewable energy production, while simultaneously generating a versatile fuel and a valuable chemical feedstock. All approaches to solar hydrogen are, however, no equally promising.

2018 ◽  
Vol 6 (25) ◽  
pp. 11670-11675 ◽  
Author(s):  
Hao Chen ◽  
Xiao-Yuan Liu ◽  
Shizhuo Wang ◽  
Xu Wang ◽  
Qi Wei ◽  
...  

Hydrogen generation based on photocatalytic water splitting is a promising strategy for renewable energy production.


Author(s):  
James Bambara ◽  
Andreas K. Athienitis ◽  
Ursula Eicker

The energy footprint of houses can be reduced by replacing the aging stock with higher density and more energy efficient homes equipped with on-site renewable energy production. In this study, a “double density” simulation scenario is considered where each existing detached house in a community is replaced with two houses of equal living area on the same land lot. The new houses were assumed to be equipped with several energy efficiency measures (envelope, HVAC, and domestic hot water) and a building-integrated photovoltaic (BIPV) roof. The TRNSYS software was used to simulate the annual energy performance of the buildings in Montreal, Québec, Canada (45.5°N). It was found that the two new houses, which can accommodate twice the number of people on the same land lot, consumed 30% less energy than the existing house. Individually, each of the new houses required 65% less electricity than the existing house (reduced from 22,560 to 7,850 kWh yr−1). In addition, the BIPV roof installed on the two new houses could generate nearly three times more electricity (44,000 kWh yr−1) than they consumed (15,700 kWh yr−1). Annually, nearly half (44%) of the house's electricity can be directly supplied by the BIPV system. A significant portion of the annual solar electricity generation (84%), which cannot be directly utilized by the houses, can be stored on-site for later use to increase self-consumption (e.g., power-to-thermal energy or charging electric vehicles) or could be exported to the grid to support decarbonization elsewhere (e.g., production of hydrogen fuel for transportation). The combined effect of energy efficient construction and on-site renewable energy production would enable occupants to shift from consuming 5,640 kWh yr−1 to producing 3,540 kWh yr−1. Residential densification can significantly contribute toward retrofitting existing communities into resilient positive energy districts.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 334 ◽  
Author(s):  
Chia-Nan Wang ◽  
Thanh-Tuan Dang ◽  
Hector Tibo ◽  
Duy-Hung Duong

Climate change and air pollution are among the key drivers of energy transition worldwide. The adoption of renewable resources can act as a peacemaker and give stability regarding the damaging effects of fossil fuels challenging public health as well as the tension made between countries in global prices of oil and gas. Understanding the potential and capabilities to produce renewable energy resources is a crucial pre-requisite for countries to utilize them and to scale up clean and stable sources of electricity generation. This paper presents a hybrid methodology that combines the data envelopment analysis (DEA) Window model, and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) in order to evaluate the capabilities of 42 countries in terms of renewable energy production potential. Based on three inputs (population, total energy consumption, and total renewable energy capacity) and two outputs (gross domestic product and total energy production), DEA window analysis chose the list of potential countries, including Norway, United Kingdom, Kuwait, Australia, Netherlands, United Arab Emirates, United States, Japan, Colombia, and Italy. Following that, the FTOPSIS model pointed out the top three countries (United States, Japan, and Australia) that have the greatest capabilities in producing renewable energies based on five main criteria, which are available resources, energy security, technological infrastructure, economic stability, and social acceptance. This paper aims to offer an evaluation method for countries to understand their potential of renewable energy production in designing stimulus packages for a cleaner energy future, thereby accelerating sustainable development.


Sign in / Sign up

Export Citation Format

Share Document