The confined space electron transfer in phosphotungstate intercalated ZnAl-LDHs enhances its photocatalytic performance for oxidation/extraction desulfurization of model oil in air

2018 ◽  
Vol 20 (24) ◽  
pp. 5509-5519 ◽  
Author(s):  
Yingjie Cai ◽  
Hongyan Song ◽  
Zhe An ◽  
Xu Xiang ◽  
Xin Shu ◽  
...  

Synergetic interaction between phosphotungstate and hydrotalcites in confined space enhances electron transfer and photo catalytic oxidation of DBT.

2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


2020 ◽  
Vol 56 (44) ◽  
pp. 5929-5932 ◽  
Author(s):  
Peng Li ◽  
Qi Sui ◽  
Meng-Yue Guo ◽  
Shuai-Liang Yang ◽  
Ran Bu ◽  
...  

The MOF provides unique confined space furnished with electron acceptor sites, and exposure to amines/alcohols causes specific and size-selective direct/UV-assisted color change owing to spontaneous/photoinduced electron transfer.


2021 ◽  
Vol 72 (3) ◽  
pp. 89-101
Author(s):  
Guowei Zeng ◽  
Guihong Wu ◽  
Zhihui Wang ◽  
Xiaonan Li ◽  
Jie Yang ◽  
...  

In this work, K7PW11O39 (abbreviated as PW11) was immobilized on ZrO2 nanofibers and used as an efficient recyclable catalyst in extraction catalytic oxidation desulfurization system (ECODS).The 500 ppm DBT model oil(5mL) can desulphurize completely within 20 min with the catalytic conditions of 50��, 0.010 g 50 wt%- CTAB�C PW11�CZrO2 nanofibers and O/S molar ratio H2O2/DBT molar ratio�� was 2:1. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and thermo gravimetric analyzer (TGA). The results indicated the PW11�CZrO2 nanofibers were synthesized successfully and the possible catalytic mechanism is also revealed.


2011 ◽  
Vol 233-235 ◽  
pp. 1684-1689 ◽  
Author(s):  
Heng Shen Xie ◽  
Zhi Min Zong ◽  
Qing Wei ◽  
Pei Zhi Zhao ◽  
Jian Jun Zhao ◽  
...  

Shenfu bituminous coal (SFBC) and Xilinhaote lignite (XL) were subject to photo-catalytic oxidation with hydrogen peroxide over titanium dioxide. The reaction mixtures were extracted with acetone exhaustively. The extracts were analyzed with FTIR and GC/MS. The results show that coals be oxidized selectively and degraded partially. Compared with the bituminite coal, the oxidation effect of the lignite coal with active hydrogens is more obvious. The alkyl side chains of the macromolecules, particularly, chains of methyl, methylene and aromatic, are the most vulnerable in relation to other compounds in coals. Moreover, the increasing of straight-chain alkanes and the decreasing of condensed nucleus in SFBC and XL through oxidation suggest that the oxidation is an effective method of coal utilization with no difficultly, also be friendly towards the environment after treated as well as in the process of the treatment.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 877-885 ◽  
Author(s):  
Qiang Luo ◽  
Kun Zhu ◽  
Shi-Zhao Kang ◽  
Lixia Qin ◽  
Sheng Han ◽  
...  

By facilely pre-implanting Co[Formula: see text] ions in the graphene oxide, a novel 5,15-diphenyl-10,20-di(4-pyridyl)porphyrin pillared graphene oxide was fabricated by means of electrostatic interaction and coordination interaction. It was shown that the morphology and the structure of graphene oxide and pyridylporphyrin nanocomposite were modified by introducing Co[Formula: see text] ions on the interface between graphene oxide and pyridylporphyrin. Furthermore, it was found that the photocatalytic hydrogen evolution activity over the Co[Formula: see text] ions implanted in the graphene oxide and pyridylporphyrin nanocomposite was evidently higher than in the graphene oxide and pyridylporphyrin nanocomposite without Co[Formula: see text]. This confirmed that strong interaction and efficient electron transfer between pyridylporphyrin and graphene oxide are the important reasons for the enhanced photocatalytic activity for hydrogen evolution. Subsequently, this technique will be a simple and efficient approach to optimize the transfer pathway of photogenerated electrons and to improve photocatalytic performance by implanting metal ions in the interface of nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document