Immobilization of K7PW11O39 on ZrO2 Nanofiber: Ultra-deep Desulfurization Based in Extraction Catalytic Oxidation Desulfurization System

2021 ◽  
Vol 72 (3) ◽  
pp. 89-101
Author(s):  
Guowei Zeng ◽  
Guihong Wu ◽  
Zhihui Wang ◽  
Xiaonan Li ◽  
Jie Yang ◽  
...  

In this work, K7PW11O39 (abbreviated as PW11) was immobilized on ZrO2 nanofibers and used as an efficient recyclable catalyst in extraction catalytic oxidation desulfurization system (ECODS).The 500 ppm DBT model oil(5mL) can desulphurize completely within 20 min with the catalytic conditions of 50��, 0.010 g 50 wt%- CTAB�C PW11�CZrO2 nanofibers and O/S molar ratio H2O2/DBT molar ratio�� was 2:1. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and thermo gravimetric analyzer (TGA). The results indicated the PW11�CZrO2 nanofibers were synthesized successfully and the possible catalytic mechanism is also revealed.

2002 ◽  
Vol 01 (05n06) ◽  
pp. 477-481 ◽  
Author(s):  
LEE DON KEUN ◽  
YOUNG SOO KANG

Silver nanoclusters have been formed by thermal decomposition of Ag-oleate complex. Transmission electron microscopic (TEM) images of the particles showed two-dimensional assembly of particles with diameter of 10.5 nm. Energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanoclusters showed the highly crystalline nature of the silver structures. The decomposition of silver-oleate complex was analyzed by Thermo Gravimetric Analyzer (TGA) and the crystallization process was observed by XRD. The removal of the surfactant surrounding silver nanoclusters was measured by FT-IR and SEM images.


2017 ◽  
Vol 70 (3) ◽  
pp. 271
Author(s):  
Pengfei Xing ◽  
Rongxiang Zhao ◽  
Xiuping Li ◽  
Xiaohan Gao

The ultra-deep desulfurization of fuel oil has become inevitable for environmental protection. Here, CoWO4/g-C3N4 was used as a catalyst, H2O2 as an oxidant, and 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4], IL) as an extractant for the oxidative desulfurization of model oil. Scanning electron microscopy, FT-IR spectroscopy, N2 adsorption isotherms, and X-ray diffraction were used to confirm the morphology, structure, and properties of the catalysts. The influence of calcination temperature, loading dose of cobalt, amount of H2O2, reaction temperature, and other parameters were investigated. The removal rate of sulfide in model oil could reach 92.9 % at 80°C in 180 min under the optimal operation conditions (V(oil) = 5 mL, T = 80°C, m(catalyst) = 0.03 g, V(H2O2) = 0.4 mL, t = 180 min, V(IL) = 1.0 mL). In addition, the catalyst was reused five times with no significant reduction in the catalytic activity.


2012 ◽  
Vol 512-515 ◽  
pp. 91-94 ◽  
Author(s):  
Ri Yu ◽  
Jae Hwan Pee ◽  
Hyung Tae Kim ◽  
Kyung Ja Kim ◽  
Young Woong Kim ◽  
...  

The Magnesium hydroxide sulfate hydrate whiskers (5Mg(OH)2.MgSO4.3H2O, abbreviated 513MHSH) have attracted much attention due to its practical applications as filler and reinforcement. However, it is difficult to produce high quality MHSH because plate-like Mg(OH)2 impurities were formed in high concentrations of OH- and interaction between Mg2+ and OH-. In this work, to reduce formation Mg(OH)2, molar ratio ofSuperscript text magnesium oxide (MgO) and magnesium sulfate (MgSO4.7H2O) were controlled. As a result, when low concentration of SO42-, MHSH whiskers co-existed with hexagonal plate Mg(OH)2. The molar ratio of MgSO4.7H2O/MgO was high, uniform MHSH whiskers were formed without Mg(OH)2. In addition, appropriate amount of NH4OH has affected formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA)


2014 ◽  
Vol 13 (03) ◽  
pp. 1450018 ◽  
Author(s):  
S. K. Kannan ◽  
M. Sundrarajan

In this study, the synthesis of a cerium oxide nanoparticle was carried out from Acalypha indica leaf extract. The synthesized nanoparticle was characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) and Transmission Electron Microscope (TEM) for structural confirmation. The studies clearly indicate that the synthesized CeO 2 nanoparticle is a crystalline material with particle size between 25–30 nm. Further analysis was carried out by Fourier Transform infrared spectroscopy (FT-IR), to provide evidence for the presence of Ce - O - Ce asymmetry stretching of the CeO 2 nanoparticle. Thermo Gravimetric and Differential Scanning Calorimetry analyses gave the thermal properties of cerium oxide nanoparticles. Antibacterial studies were conducted using the synthesized CeO 2. This result showed increasing rate of antibacterial behavior with gram positive and gram negative bacteria.


2011 ◽  
Vol 239-242 ◽  
pp. 1643-1648 ◽  
Author(s):  
Qin Tang ◽  
Xiang Yong Chen ◽  
Wei Bing Hu ◽  
Gui Yun Zhou

Calcium carbonate was obtained by the microwave-assisted hydrothermal synthesized technique using calcium chloride and urea as the raw materials. The uniform aragonite hexagonal columnar-shaped calcium carbonate with a diameter of 3.0~4.0μm and 70~120μm in length were produced without any additives at the molar ratio of urea and calcium chloride 1.5:1, microwave power 600W. The morphology, size and crystal structure were characterized by means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR).The formation process of aragonite hexagonal columnar-shaped calcium carbonate was discussed.


2014 ◽  
Vol 540 ◽  
pp. 30-34
Author(s):  
Qu Li ◽  
Jing Liang ◽  
Dong Teng Long ◽  
Wei Liang Cheng ◽  
Chang Qing Dong ◽  
...  

Co-doped Fe2O3 oxygen carriers reacted with CO were investigated in order to study the temperature effect on the redox characterization.Co-Fe2O3 were characterized with X-ray diffraction (XRD), BET and transmission electron microscope (TEM), which showed that the surface structure was regular, and the polymorph was stable. The TG (Thermo Gravimetric Analyzer) analysis indicted that, rational doping Co could enhance the reactivity of iron-base oxygen carrier reacted with CO under different conditions. Oxygen carrier with Fe: Co molar ratio of 1:0.1 had best reactivity. With the temperature increased, the reduction degree became deeper and the complete conversion time shortened. The reduction reaction Co0.1Fe oxygen carrier with CO was carried out step by step, and the entire process was divided into three stages, namely 344.7-391.0, 414.7-472.5 and 607.6-681.5°C.


2019 ◽  
Vol 21 (4) ◽  
pp. 98-105 ◽  
Author(s):  
Ishaq F. E. Ahmed ◽  
Ahmed I. El-Shenawy ◽  
Moamen S. Refat

Abstract Herein, the photocatalytic degradation of the Congo Red (CR) and Crystal Violet (CV) dyes in an aqueous solution were discussed in the presence of an indium(III) oxide (In2O3) as optical catalyst efficiency. The caproate bidentate indium(III) precursor complex has been synthesized and well interpreted by elemental analysis, molar conductivity, Fourier transform infrared (FT-IR), UV-Vis, and thermogravimetric (TGA) with its differential thermogravimetric (DTG) studies. The microanalytical and spectroscopic assignments suggested that the associated of mononuclear complex with 1:3 molar ratio (M3+:ligand). Octahedral structure is speculated for this parent complex of the caproate anion, CH3(CH2)4COO− ligand. The In2O3 NPs with nanoscale range within 10–20 nm was synthesized by a simple, low cost and eco-friendly method using indium(III) caproate complex. Indium oxide nanoparticles were formed after calcination of precursor in static air at 600°C for 3 hrs. The structural, grain size, morphological and decolorization efficiency of the synthesized NPs were characterized using the FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analyses. It was worthy mentioned that the prepared In2O3 NPs showed a good photodegradation properties against CR and CV organic dyes during 90 min.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2010 ◽  
Vol 123-125 ◽  
pp. 1291-1294 ◽  
Author(s):  
Bin Lü ◽  
Jian Zhong Ma ◽  
Dang Ge Gao ◽  
Lei Hong

Modified rapeseed oil(MRO) was prepared by using rapeseed oil, ethylene diamine and acrylic acid as the raw materials. Modified rapeseed oil/montmorillonite(MRO/MMT) nanocomposite was prepared by using modified rapeseed oil and montmorillonite. The emulsifying properties of MRO and MRO/MMT were determined respectively. Fourier transforms infrared spectrometry (FT-IR) and Transmission Electron microscope (TEM) results showed that MRO/MMT was prepared successfully. X-ray diffraction (XRD) results showed that modified rapeseed oil could smoothly enter the interlayer of montmorillonite, and modified the montmorillonite; with an increase in the amount of montmorillonite, the layer spacing of montmorillonite in the MRO/MMT lower after the first increase. The results of emulsifying properties indicated that emulsifying properties of MRO/MMT was better than MRO.


Sign in / Sign up

Export Citation Format

Share Document