scholarly journals Influence of surface treatment on PEDOT coatings: surface and electrochemical corrosion aspects of newly developed Ti alloy

RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 19181-19195 ◽  
Author(s):  
A. Madhan Kumar ◽  
M. A. Hussein ◽  
Akeem Yusuf Adesina ◽  
Suresh Ramakrishna ◽  
N. Al-Aqeeli

Surface treatment of metallic materials prior to the application of polymer coatings plays an important role in providing improved surface features and enhanced corrosion protection.

2015 ◽  
Vol 60 (2) ◽  
pp. 735-738 ◽  
Author(s):  
D. Klimecka-Tatar ◽  
S. Borkowski ◽  
P. Sygut

Abstract The main goal of the study was to carry out the treatment of cyclic oxidation of Ti alloy (Ti-1Al-1Mn) in air atmosphere. Based on measurements of mass gain of titanium alloy samples (Ti-1Al-1Mn) the kinetic oxidation curves during cyclic annealing were determined. The oxidized surface of the titanium alloy was carefully observed with optical microscopy equipment and the geometrical development, shape and surface morphology were defined. The phase composition of the obtained oxide layers on the Ti-alloy with qualitative analysis of the X-ray were defined. Since titanium alloys are among the most widely used metallic materials in dental prosthetics the corrosion measurements in a solution simulating the environment of the oral cavity were carried out. The results confirmed that the used titanium alloy easily covered with oxides layers, which to some extent inhibit the processes of electrochemical corrosion in artificial saliva solution.


2010 ◽  
Vol 17 (02) ◽  
pp. 153-157 ◽  
Author(s):  
N. R. HA ◽  
Z. X. YANG ◽  
G. C. KIM ◽  
K. H. HWANG ◽  
D. S. SEO ◽  
...  

Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).


Author(s):  
R. Subasri

Surface cleaning and activation of substrates are two critical processes that affect the mechanical and corrosion resistance properties of protective coatings when deposited on the substrates. Surface cleaning removes the contaminants, for example, grease on the substrate, and surface activation introduces active bonds on the substrate thereby increasing the surface free energy. Conventionally, surface cleaning and activation of aluminum and its alloys are carried out by a wet chemical technique. A convenient and safe alternate to the wet chemical cleaning/activation would be to use plasma for the same purpose. Plasma surface pre-treatment greatly improves adhesion of coatings deposited, which is very vital for good corrosion protection and mechanical properties such as scratch and abrasion resistance. Cold and atmospheric air plasma treatments have been the most widely studied pre-treatments for Al alloys. This article will discuss the advancements in the use of plasma treatment on Al/Al alloys and its effect on corrosion resistance and mechanical properties of coatings deposited after the surface treatment.


2021 ◽  
Vol 904 ◽  
pp. 519-524
Author(s):  
Gui Yun Zhang ◽  
Yong Wang ◽  
Tian Wei Zhang ◽  
Chen Yu Zhao

Sea water resources are extensive and can be used to extinguish fires, but their corrosiveness is a major problem. Using the method of electrochemical workstation, the electrochemical corrosion behavior of aluminum sheet in artificial sea water solution and silica-coated artificial seawater was studied; by analyzing the surface morphology, polarization curve and electrochemical impedance spectroscopy, the electrochemical corrosion behavior of aluminum sheets under different immersion times and different immersion media is obtained. The conclusion is that the coating of nanosilica powder has a certain corrosion protection effect on artificial seawater.


Sign in / Sign up

Export Citation Format

Share Document