electrochemical corrosion
Recently Published Documents


TOTAL DOCUMENTS

1771
(FIVE YEARS 519)

H-INDEX

57
(FIVE YEARS 10)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 477
Author(s):  
Yaru Liu ◽  
Lu Xing ◽  
Qing Zeng ◽  
Qinglin Pan ◽  
Sheng Li ◽  
...  

The quenching condition of aluminum alloy can affect the mechanical property and corrosion resistance of the profile. This paper is aimed at the low quench sensitivity of aluminum alloys. Scanning electron microscopy and transmission electron microscopy were used to analyze precipitate behaviors of the 7A46 aluminum alloy under different isothermal cooling conditions and microstructure evolutions of quench-induced precipitations. The effect of the different isothermal time on the corrosion resistance of the alloy, and the relationship between microstructure and corrosion resistance after quenching were revealed through electrochemical impedance spectroscopy and potentiodynamic polarization tests. Results show that corrosion sensitivity of the quenching-aged alloy is much higher than that of the double-aged (DA) alloy, and the corrosion resistance of the quenched alloy decreases firstly and then increases. Due to the high density of the matrix precipitates, the increased content of the impurity element, the discontinuity of the grain boundary precipitates and the widening of the precipitates free zone, the most serious degree of corrosion performance among the quenched alloys is 295 °C at 800 s, and the self-corrosion potential and self-current density is −0.919 V and 2.371 μA/cm2, respectively.


Author(s):  
RABIA MUKHTAR ◽  
NAVEED AFZAL ◽  
MOHSIN RAFIQUE ◽  
AMEEQ FAROOQ

Artificial ageing of Al-7075 alloy was performed in a muffle furnace at different temperatures ranging from 120∘C to 190∘C for 3[Formula: see text]h. The formation of MgZn2 precipitates in the aged alloy was confirmed through the XRD data. The lattice parameter and crystallite size of aluminum were increased with the increase of the ageing temperature. The scanning electron microscopy results validated the precipitates of different shapes and sizes in the aged samples. The number density of the precipitates was found to be maximum at 170∘C. The Vickers hardness of Al-7075 alloy was increased from 125[Formula: see text]HV to 172[Formula: see text]HV with an increase of the ageing temperature from 120∘C to 170∘C and then decreased at 190∘C. The electrochemical tests of the un-aged and aged samples (in 3.5[Formula: see text]wt.% NaCl solution) showed a decrease in the corrosion rate (0.003[Formula: see text]mm/y) and an increase in the corrosion potential ([Formula: see text]137[Formula: see text]mV) of the alloy upon ageing up to 150∘C, indicating improvement in its corrosion resistance.


Author(s):  
Gaurav Malik ◽  
Jignesh Hirpara ◽  
Ankit Kumar ◽  
Mritunjay Kumar Pandey ◽  
Ramesh Chandra

CORROSION ◽  
10.5006/3957 ◽  
2021 ◽  
Author(s):  
sakthivel kandaiah

Herein we report the electrochemical corrosion behavior of pre and post heat-treated composite coatings of NiCrMoFeCoAl-30%SiO2 and NiCrMoFeCoAl-30%Cr2O3 on ASTM SA213-T22 boiler tube steel by high velocity oxygen fuel (HVOF) spraying technique. The samples were subjected to hot molten salt (Na2SO4–60%V2O5) corrosion environment in a tubular furnace at 7000C under thermocyclic conditions. The microscopic, structural and electrochemical investigations of post-heat treated specimens reveal NiCrMoFeCoAl-30%Cr2O3 composite HVOF coating exhibits a superior corrosion resistance compared to NiCrMoFeCoAl-30%SiO2 composite coating and bare ASTM SA213-T22 steel boiler tube steel in neutral electrolyte. The room temperature potentiodynamic and impedance investigations of heat-treated samples suggest high interfacial charge transfer resistance for HVOF coatings over a wide anodic potential window. This could be ascribed to the protective nature of the chromium oxide containing coatings on high temperature treatment. AC impedance analysis reveals NiCrMoFeCoAl-30%Cr2O3 coating exhibits very high resistive behaviour with very high charge transfer resistance, in the order of 106 Ohm higher than the NiCrMoFeCoAl-30%SiO2 coating and uncoated ASTM SA213-T22 steel boiler tube steel. Furthermore, the high temperature induced formation of metal chromates/chromites along with the presence of Cr2O3 provides good resistance towards corrosion.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 69
Author(s):  
Jakob Kübarsepp ◽  
Kristjan Juhani ◽  
Marek Tarraste

WC-based hardmetals are employed widely as wear-resistant ceramic–metal composites for tools and wear parts. Raw materials supply, environmental concerns and some limitations of hardmetals have directed efforts toward development of alternative wear-resistant composites–cermets. We present a current state of knowledge in the field of ceramic-rich (≥50 vol%) cermets behavior in abrasion and erosion conditions, which are the dominant types of wear in many industrial applications. Distinction is made between two-body and three-body abrasion, solid-particle erosion, and slurry erosion. Cermets, in particular TiC-, Ti(C,N)- and Cr3C2-based composites and hardmetals, are compared for their abrasive and erosive wear performance and mechanism. The review enabled formulation of tribological conditions in which cermets may be comparable or have potential to outperform WC-Co hardmetals. Hardmetals, in general, outperform cermets in abrasion and solid-particle erosion at room and moderate temperatures. However, cermets demonstrate their potential mainly in severe conditions—at elevated temperatures and corrosive (oxidation, electrochemical corrosion) environments.


Sign in / Sign up

Export Citation Format

Share Document