scholarly journals Facile efficient earth abundant NiO/C composite electrocatalyst for the oxygen evolution reaction

RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5701-5710 ◽  
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Muhammad Ishaq Abro ◽  
Saleem Raza Chaudhry ◽  
...  

Due to the increasing energy consumption, designing efficient electrocatalysts for electrochemical water splitting is highly demanded.

2021 ◽  
Author(s):  
Yuhou Pei ◽  
Jiong Cheng ◽  
Heng Zhong ◽  
Zhenfeng Pi ◽  
Zhao Yu ◽  
...  

Replacing the sluggish oxygen evolution reaction (OER) by sulfide electro-oxidation reaction (SOR) could be a promising way to decrease the energy consumption for hydrogen evolution reaction (HER) and to treat...


2021 ◽  
Author(s):  
Jorge Colon ◽  
Kálery La Luz-Rivera ◽  
Joel Sanchez ◽  
Andrea Cortés-Ortiz ◽  
Victoria Figueroa ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Haibin Ma ◽  
ChangNing SUN ◽  
Zhili Wang ◽  
Qing Jiang

It is of great importance to develop efficient and low-cost oxygen evolution reaction (OER) electrocatalysts for electrochemical water splitting. Herein, S doped NiCoVOx nanosheets grown on Ni-Foam (S-NiCoVOx/NF) with modified...


2021 ◽  
Vol MA2021-01 (45) ◽  
pp. 1827-1827
Author(s):  
Jorge L Colon ◽  
Mario V. Ramos-Garcés ◽  
Joel Sanchez ◽  
Yanyu Wu ◽  
Isabel Barraza-Alvarez ◽  
...  

2019 ◽  
Vol 7 (46) ◽  
pp. 26410-26420 ◽  
Author(s):  
Maira Sadaqat ◽  
Laraib Nisar ◽  
Noor-Ul-Ain Babar ◽  
Fayyaz Hussain ◽  
Muhammad Naeem Ashiq ◽  
...  

Electrochemical water splitting is economically unviable due to the sluggish kinetics of the anodically uphill oxygen evolution reaction (OER).


Nanoscale ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 3378-3385 ◽  
Author(s):  
Changhong Zhan ◽  
Zheng Liu ◽  
Yang Zhou ◽  
Mingliang Guo ◽  
Xiaolin Zhang ◽  
...  

Electrochemical water splitting requires an efficient water oxidation catalyst to accelerate the oxygen evolution reaction (OER).


2021 ◽  
Vol 3 ◽  
Author(s):  
Tofik Ahmed Shifa ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Alberto Vomiero

The design of oxygen evolution reaction (OER) electrocatalysts based on Earth-abundant materials holds great promise for realizing practically viable water-splitting systems. In this regard, two-dimensional (2D) nonlayered materials have received considerable attention in recent years owing to their intrinsic dangling bonds which give rise to the exposure of unsaturated active sites. In this work, we solved the synthesis challenge in the development of a 2D nonlayered Cr2S3 catalyst for OER application via introducing a controllable chemical vapor deposition scheme. The as-obtained catalyst exhibits a very good OER activity requiring overpotentials of only 230 mV and 300 mV to deliver current densities of 10 mA cm−2 and 30 mA cm−2, respectively, with robust stability. This study provides a general approach to optimize the controllable growth of 2D nonlayered material and opens up a fertile ground for studying the various strategies to enhance the water splitting reactions.


Sign in / Sign up

Export Citation Format

Share Document