nickel foam
Recently Published Documents





2022 ◽  
Vol 893 ◽  
pp. 162160
Shujuan Zhan ◽  
Xianen Hu ◽  
Zhencheng Lou ◽  
Jinzhu Zhu ◽  
Ya Xiong ◽  

2022 ◽  
Vol 892 ◽  
pp. 162079
Jingyi Wang ◽  
Shatila Sarwar ◽  
Jun Song ◽  
Lijun Du ◽  
Tianbao Li ◽  

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Xiaoli Wang ◽  
Yin Wang ◽  
Xinyu Zhao

The development of superior electrochemical energy-storage devices designed through a facile, cost-efficient, and green synthesis technique is the key to addressing the intermittent nature of renewable energy sources such as solar and wind energy. In our present work, we design a simple, surfactant-free, and low-temperature chemical strategy to prepare novel integrated, MnO2 composite electrodes with two-dimensional (2D) nanosheet film directly supported on three-dimensional (3D) conductive nickel foam. Benefiting from the specific 2D nanosheet architecture to provide a large interfacial contact area and highly conductive metal scaffolds to facilitate fast electron transfer, the novel nanosheet-assembled MnO2-integrated electrodes exhibit higher specific capacitance of 446 F g−1 at the current density of 1 A g−1 compared with nanostructured MnO2 and commercial MnO2 powder electrodes. More importantly, the as-synthesized devices are able to achieve an outstanding cycling performance of 95% retention after 3000 cycles. The present work, which is based on the low-temperature chemical route to deposit active materials on the conductive substrate, provides new insights into designing a binder-free supercapacitor system to improve the specific capacitance, cycling, and rate performance as next-generation, energy-storage devices.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 270
Syed Shaheen Shah ◽  
Himadri Tanaya Das ◽  
Hasi Rani Barai ◽  
Md. Abdul Aziz

Energy generation can be clean and sustainable if it is dependent on renewable resources and it can be prominently utilized if stored efficiently. Recently, biomass-derived carbon and polymers have been focused on developing less hazardous eco-friendly electrodes for energy storage devices. We have focused on boosting the supercapacitor’s energy storage ability by engineering efficient electrodes in this context. The well-known conductive polymer, polyaniline (PANI), deposited on nickel foam (NF) is used as a positive electrode, while the activated carbon derived from jute sticks (JAC) deposited on NF is used as a negative electrode. The asymmetric supercapacitor (ASC) is fabricated for the electrochemical studies and found that the device has exhibited an energy density of 24 µWh/cm2 at a power density of 3571 µW/cm2. Furthermore, the ASC PANI/NF//KOH//JAC/NF has exhibited good stability with ~86% capacitance retention even after 1000 cycles. Thus, the enhanced electrochemical performances of ASC are congregated by depositing PANI on NF that boosts the electrode’s conductivity. Such deposition patterns are assured by faster ions diffusion, higher surface area, and ample electroactive sites for better electrolyte interaction. Besides advancing technology, such work also encourages sustainability.

2022 ◽  
Jianmin Zhu ◽  
Lishuang Xu ◽  
Shuai Zhang ◽  
Ying Yang ◽  
Licheng Huang ◽  

One-step hydrothermal method to synthesize a stable ZnCo2(OH)F nanorod array structure supported by nickel foam.

Sign in / Sign up

Export Citation Format

Share Document