New 1D diorganotin(iv) dithiolate coordination polymers: crystallographic, computational, Hirshfeld surface and thermal analyses

CrystEngComm ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 2049-2059 ◽  
Author(s):  
Pooja Singh ◽  
Amita Singh ◽  
Ayushi Singh ◽  
Ashish Kumar Singh ◽  
Gabriele Kociok-Köhn ◽  
...  

Three new 1D coordination polymers of diorganotin(iv) dithiolates synthesized and the nature of their weak interactions addressed using computational techniques.

CrystEngComm ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 2414-2423
Author(s):  
Amita Singh ◽  
Ayushi Singh ◽  
Suryabhan Singh ◽  
Gabriele Kociok-Köhn ◽  
Mohd. Muddassir ◽  
...  

Three new ferrocene decorated 1D coordination polymers of Hg(ii) dithiocarbamates were synthesized and the nature of their weak interactions was addressed using computational techniques.


2019 ◽  
Vol 75 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Rafika Bouchene ◽  
Sofiane Bouacida

Two new coordination polymers, namely poly[[(3-aminopyrazin-4-ium-2-carboxylate-κ2 N 1,O)di-μ-chlorido-cadmium(II)] monohydrate], {[CdCl2(C5H5N3O2)]·H2O} n , (1), and poly[2-amino-3-carboxypyrazin-1-ium [(3-aminopyrazine-2-carboxylato-κ2 N 1,O)di-μ-chlorido-cadmium(II)] monohydrate], {(C5H6N3O2)[Cd(C5H4N3O2)Cl2]·H2O} n , (2), have been synthesized from the reaction of cadmium(II) chloride and 3-aminopyrazine-2-carboxylic acid (Hapca) under mild conditions in acidic media. The two coordination polymers have been characterized by single-crystal X-ray diffraction and show chloride-bridged zigzag chains with octahedrally coordinated metal ions, where Hapca acts as a bidentate ligand via the π-conjugated N atom and a carboxylate O atom. The chains are further interconnected via noncovalent interactions into three-dimensional supramolecular networks. The dominant H...O and H...Cl interactions for both compounds were quantified using Hirshfeld surface analysis. The thermal stability and topological analysis of the two-dimensional networks of (1) and (2) are also discussed.


2015 ◽  
Vol 71 (a1) ◽  
pp. s434-s435
Author(s):  
Boris-Marko Kukovec ◽  
Nikolina Penić ◽  
Nives Matijaković ◽  
Marijana Đaković

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2021 ◽  
Vol 19 ◽  
Author(s):  
Kikuko Iida ◽  
Toyokazu Muto ◽  
Miyuki Kobayashi ◽  
Hiroaki Iitsuka ◽  
Kun Li ◽  
...  

Abstract: X-ray crystal and Hirshfeld surface analyses of 2-hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene and its 2-methoxylated homologue show quantitatively and visually distinct molecular contacts in crystals and minute differences in the weak intermolecular interactions. The title compound has a helical tubular packing, where molecules are piled in a two-folded head-to-tail fashion. The homologue has a tight zigzag molecular string lined up behind each other via nonclassical intermolecular hydrogen bonds between the carbonyl oxygen atom and the hydrogen atom of the naphthalene ring. The dnorm index obtained from the Hirshfeld surface analysis quantitatively demonstrates stronger molecular contacts in the homologue, an ethereal compound, than in the title compound, an alcohol, which is consistent with the higher melting temperature of the former than the latter. Stabilization through the significantly weak intermolecular nonclassical hydrogen bonding interactions in the homologue surpasses the stability imparted by the intramolecular C=O…H–O classical hydrogen bonds in the title compound. The classical hydrogen bond places the six-membered ring in the concave of the title molecule. The hydroxy group opposingly disturbs the molecular aggregation of the title compound, as demonstrated by the distorted H…H interactions covering the molecular surface, owing to the rigid molecular conformation. The position of effective interactions predominate over the strength of the classical/nonclassical hydrogen bonds in the two compounds.


Author(s):  
Mohd Muslim ◽  
Arif Ali ◽  
Saima Kamaal ◽  
Musheer Ahmad ◽  
Mohd Afzal ◽  
...  

The title compound, C19H17NO5, obtained by ether bond formation between the reagents, crystallizes in the monoclinic space group P21/c. The compound is non-planar, subtending a dihedral angle of 82.38 (4)° between the plane of hydroxy isophthalate-based ester and that of the benzonitrile moiety. The molecule is bent at the ether linkage, with a Caryl—O—Caryl bond angle of 116.74 (11)°. In the crystal, molecules are linked by C—H...O hydrogen bonds and other weak interactions forming a supramolecular framework. A Hirshfeld surface analysis was performed to generate two-dimensional fingerprint plots, which reveal the type of interactions occurring in the vicinity of the molecule.


2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


Sign in / Sign up

Export Citation Format

Share Document